Acclimatization of soil respiration to warming in a tall grass prairie (original) (raw)

References

  1. Houghton, J. T. et al. (eds) Climate Change 2001: The Scientific Basis 1–896 (Cambridge Univ. Press, Cambridge, 2001).
    Google Scholar
  2. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
    Article ADS CAS Google Scholar
  3. Lenton, T. M. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B 52, 1159–1188 (2000).
    Article ADS Google Scholar
  4. Woodwell, G. M. et al. Biotic feedbacks in the warming of the earth. Clim. Change 40, 495–518 (1998).
    Article CAS Google Scholar
  5. Sarmiento, J. Global change: That sinking feeling. Nature 408, 155–156 (2000).
    Article ADS CAS Google Scholar
  6. Schimel, D. S. et al. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Glob. Biogeochem. Cycles 10, 677–692 (1996).
    Article ADS CAS Google Scholar
  7. Jenkinson, D. S., Adams, D. E. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991).
    Article ADS CAS Google Scholar
  8. Kirschbaum, M. U. F. Will changes in soil organic matter act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51 (2000).
    Article CAS Google Scholar
  9. Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).
    Article Google Scholar
  10. Verville, J. H., Hobbie, S. E., Chapin, F. S. III & Hooper, D. U. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41, 215–235 (1998).
    Article CAS Google Scholar
  11. Liski, J., Ilvesniemi, H., Mäkelä, A. & Westman, C. J. CO2 emissions from soil in response to climatic warming are overestimated—The decomposition of old soil organic matter is tolerant of temperature. Ambio 28, 171–174 (1999).
    Google Scholar
  12. Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. & Tingey, D. T. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob. Change Biol. 5, 157–168 (1999).
    Article ADS Google Scholar
  13. Rustad, L. E. & Fernandez, I. J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Glob. Change Biol. 4, 597–605 (1998).
    Article ADS Google Scholar
  14. Peterjohn, W. T. et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl. 4, 617–625 (1994).
    Article Google Scholar
  15. Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).
    Article ADS CAS Google Scholar
  16. McHale, P. J., Mitchell, M. J. & Bowles, F. P. Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Can. J. Forest. Res. 28, 1365–1372 (1998).
    Article Google Scholar
  17. Saleska, S. R., Harte, J. & Torn, M. S. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Glob. Change Biol. 5, 125–141 (1999).
    Article ADS Google Scholar
  18. Cheng, W., Zhang, Q., Coleman, D. C., Carroll, C. R. & Hoffman, C. A. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol. Biochem. 28, 1283–1288 (1996).
    Article CAS Google Scholar
  19. Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861 (2000).
    Article ADS CAS Google Scholar
  20. Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).
    Article ADS CAS Google Scholar
  21. Zogg, G. P. et al. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J. 61, 475–481 (1997).
    Article ADS CAS Google Scholar
  22. Atkin, O. K., Edwards, E. J. & Loveys, B. R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 147, 141–154 (2000).
    Article CAS Google Scholar
  23. Kirshbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).
    Article Google Scholar
  24. Striegl, R. G. & Wickland, K. P. Effects of a clear-cut harvest on soil respiration in a jack pine–lichen woodland. Can. J. Forest. Res. 28, 534–539 (1998).
    Article Google Scholar
  25. Raich, J. W. & Potter, C. S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 9, 23–36 (1995).
    Article ADS CAS Google Scholar
  26. Tarr, J., Botkin, G., Rice, E. L., Carpenter, E. & Hart, M. A broad analysis of fifteen sites in the tall-grass prairie of Oklahoma. Proc. Oklahoma Acad. Sci. 60, 39–42 (1980).
    Google Scholar
  27. National Cooperative Soil Survey 1–151 (US Department of Agriculture, Soil Survey of McClain County, Oklahoma Agricultural Experiment Station, Stillwater, 1963).
  28. Shaver, G. R. et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience 50, 871–882 (2000).
    Article Google Scholar

Download references