Localization and translation of mRNA in dentrites and axons (original) (raw)
Magee, J. C. Dendritic integration of excitatory synaptic input. Nature Rev. Neurosci.1, 181–190 (2000). CAS Google Scholar
Steward, O. & Falk, P. M. Polyribosomes under developing spine synapses: growth specializations of dendrites at sites of synaptogenesis. J. Neurosci. Res.13, 75–88 (1985). CASPubMed Google Scholar
Steward, O. & Falk, P. M. Protein-synthetic machinery at postsynaptic sites during synaptogenesis: a quantitative study of the association between polyribosomes and developing synapses. J. Neurosci.6, 412–423 (1986). CASPubMedPubMed Central Google Scholar
Steward, O. & Falk, P. M. Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J. Comp. Neurol.314, 545–557 (1991). CASPubMed Google Scholar
Steward, O., Falk, P. M. & Torre, E. R. Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. J. Neurocytol.25, 717–734 (1996). CASPubMed Google Scholar
Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cytol.2 (Suppl.), 193–202 (1956).One of the first characterizations of membrane structures in dendrites using electron microscopy. Palay proposed that structures of the protein-synthetic pathway are present in dendrites at long distances from the cell body. CASPubMedPubMed Central Google Scholar
Peters, A. Fine Structure of the Nervous System (Oxford Univ. Press, Oxford, 1991). Google Scholar
Gray, E. G. Axo-somatic and axo-denritic synapses of the cerebral cortex: an electron microscope study. J. Anat.93, 420–433 (1959). CASPubMedPubMed Central Google Scholar
Tarrant, S.B. & Routtenberg, A. Postsynaptic membrane and spine apparatus: proximity in dendritic spines. Neurosci. Lett.11, 289–294 (1979). CASPubMed Google Scholar
Tarrant, S. B. & Routtenberg, A. The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. Tissue Cell9, 461–473 (1977). CASPubMed Google Scholar
Matus, A. Actin-based plasticity in dendritic spines. Science290, 754–758 (2000). CASPubMed Google Scholar
Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci.19, 168–179 (1999).Triller's group identified BiP, TGN38 and Rab1 on membrane structures near postsynaptic sites in dendrites, confirming that dendrites contain endoplasmic reticulum and Golgi apparatus. CASPubMedPubMed Central Google Scholar
Otsu, H. et al. Immunogold localization of inositol 1,4,5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct. Funct.15, 163–173 (1990). CASPubMed Google Scholar
Tiedge, H. & Brosius, J. Translational machinery in dendrites of hippocampal neurons in culture. J. Neurosci.16, 7171–7181 (1996). CASPubMedPubMed Central Google Scholar
Pierce, J. P., Van Leyen, K. & McCarthy, J. B. Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nature Neurosci.3, 311–313 (2000). CASPubMed Google Scholar
Merlie, J. P. & Sanes, J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature317, 66–68 (1985). CASPubMed Google Scholar
Garner, C. C., Tucker, R. P. & Matus, A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature336, 674–677 (1988).The first identification of an mRNA in dendrites. MAP2 mRNA was visualized in dendrites of the developing brain usingin situhybridization. CASPubMed Google Scholar
Kleiman, R., Banker, G. & Steward, O. Differential subcellular localization of particular mRNAs in hippocampal neurons in culture. Neuron5, 821–830 (1990). CASPubMed Google Scholar
Burgin, K. E. et al. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci.10, 1788–1798 (1990). CASPubMedPubMed Central Google Scholar
Furuichi, T. et al. Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (InsP3R1) in the mouse central nervous system. Receptors Channels1, 11–24 (1993). CASPubMed Google Scholar
Landry, C. F. et al. Cellular influences on RNA sorting in neurons and glia: an in situ hybridization histochemical study. Brain Res. Mol. Brain Res.27, 1–11 (1994). CASPubMed Google Scholar
Herb, A. et al. Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. Mol. Cell. Neurosci.8, 367–374 (1997). CASPubMed Google Scholar
Racca, C., Gardiol, A. & Triller, A. Cell-specific dendritic localization of glycine receptor α subunit messenger RNAs. Neuroscience84, 997–1012 (1998). CASPubMed Google Scholar
Bassell, G. J. et al. Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci.18, 251–265 (1998). CASPubMedPubMed Central Google Scholar
Link, W. et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl Acad. Sci. USA92, 5734–5738 (1995). CASPubMedPubMed Central Google Scholar
Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron14, 433–445 (1995). CASPubMed Google Scholar
Femino, A. M. et al. Visualization of single RNA transcripts in situ. Science280, 585–590 (1998). CASPubMed Google Scholar
Estee Kacharmina, J., Crino, P. B. & Eberwine, J. Preparation of cDNA from single cells and subcellular regions. Methods Enzymol.303, 3–18 (1999). Google Scholar
Miyashiro, K., Dichter, M. & Eberwine, J. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc. Natl Acad. Sci. USA91, 10800–10804 (1994).Used RNA amplification to measure many mRNA species within individual dendrites. Different levels of glutamate receptor subunit mRNAs were present in different dendrites of a common cell body. CASPubMedPubMed Central Google Scholar
Crino, P. B. & Eberwine, J. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron17, 1173–1187 (1996).Developed the dendrite transfection assay and proved that dendrites were capable of translating mRNA. CASPubMed Google Scholar
Crino, P. et al. Presence and phosphorylation of transcription factors in developing dendrites. Proc. Natl Acad. Sci. USA95, 2313–2318 (1998). CASPubMedPubMed Central Google Scholar
Davis, L., Banker, G. A. & Steward, O. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature330, 477–479 (1987).Showed movement of mRNA from cell bodies to dendrites of cultured hippocampal neurons. CASPubMed Google Scholar
Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci.16, 7812–7820 (1996).Showed that translocation of mRNA along dendrites of cortical neurons occurs in 'granules' of ribosomes. CASPubMedPubMed Central Google Scholar
Rook, M. S., Lu, M. & Kosik, K. S. CaMKII 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000). CASPubMedPubMed Central Google Scholar
Bassell, G. J. & Singer, R. H. Neuronal RNA localization and the cytoskeleton. Results Probl. Cell Differ.34, 41–56 (2001). CASPubMed Google Scholar
Knowles, R. B. & Kosik, K. S. Neurotrophin-3 signals redistribute RNA in neurons. Proc. Natl Acad. Sci. USA94, 14804–14808 (1997). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. Reversible attenuation of glutamatergic transmission in hippocampal CA1 neurons of rat brain slices following transient cerebral ischemia. Brain Res.832, 31–39 (1999). CASPubMed Google Scholar
Steward, O. et al. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron21, 741–751 (1998). CASPubMed Google Scholar
Steward, O. & Worley, P. F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron30, 227–240 (2001).Proposed two steps for the translocation of mRNA along dendrites: the stimulated synthesis and movement of mRNA along dendrites, 'routing', and the selective concentration of mRNA at a synapse, 'localization'. CASPubMed Google Scholar
Sundell, C. L. & Singer, R. H. Actin mRNA localizes in the absence of protein synthesis. J. Cell Biol.111, 2397–2403 (1990). CASPubMed Google Scholar
Taneja, K. L. et al. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J. Cell Biol.119, 1245–1260 (1992). CASPubMed Google Scholar
Ainger, K. et al. Transport and localization elements in myelin basic protein mRNA. J. Cell Biol.138, 1077–1087 (1997). CASPubMedPubMed Central Google Scholar
Muslimov, I. A. et al. RNA transport in dendrites: a _cis_-acting targeting element is contained within neuronal BC1 RNA. J. Neurosci.17, 4722–4733 (1997). CASPubMedPubMed Central Google Scholar
Mayford, M., Bach, M. E. & Kandel, E. CaMKII function in the nervous system explored from a genetic perspective. Cold Spring Harb. Symp. Quant. Biol.61, 219–224 (1996). CASPubMed Google Scholar
Mori, Y. et al. Two _cis_-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting. Nature Neurosci.3, 1079–1084 (2000). CASPubMed Google Scholar
Blichenberg, A. et al. Identification of a _cis_-acting dendritic targeting element in the mRNA encoding the α subunit of Ca2+/calmodulin-dependent protein kinase II. Eur. J. Neurosci.13, 1881–1888 (2001). CASPubMed Google Scholar
Blichenberg, A. et al. Identification of a _cis_-acting dendritic targeting element in MAP2 mRNAs. J. Neurosci.19, 8818–8829 (1999). CASPubMedPubMed Central Google Scholar
Severt, W.L. et al. The suppression of testis–brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J. Cell Sci.112, 3691–3702 (1999). CASPubMed Google Scholar
Kiebler, M.A. et al. The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J. Neurosci.19, 288–297 (1999). CASPubMedPubMed Central Google Scholar
Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen–green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell10, 2945–2953 (1999). CASPubMedPubMed Central Google Scholar
Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res.29, 2276–2283 (2001). CASPubMedPubMed Central Google Scholar
Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA94, 5395–5400 (1997). CASPubMedPubMed Central Google Scholar
Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J.20, 4803–4813 (2001). CASPubMedPubMed Central Google Scholar
Rao, A. & Steward, O. Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J. Neurosci.11, 2881–2895 (1991). CASPubMedPubMed Central Google Scholar
Feig, S. & Lipton, P. Pairing the cholinergic agonist carbachol with patterned Schaffer collateral stimulation initiates protein synthesis in hippocampal CA1 pyramidal cell dendrites via a muscarinic, NMDA-dependent mechanism. J. Neurosci.13, 1010–1021 (1993). CASPubMedPubMed Central Google Scholar
Mayford, M. et al. The 3′-untranslated region of CaMKII α is a _cis_-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl Acad. Sci. USA93, 13250–13255 (1996).Identified the 3′-UTR region of α-CaMKII mRNA as important for mRNA translocation along dendrites. CASPubMedPubMed Central Google Scholar
Estee Kacharmina, J. et al. Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proc. Natl Acad. Sci. USA97, 11545–11550 (2000). Google Scholar
Eberwine, J. H. et al. Translation of classes of mRNAs that are targeted to neuronal dendrites. Proc. Natl Acad. Sci. USA98, 7080–7085 (2001). CASPubMedPubMed Central Google Scholar
Aakalu, G. et al. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron30, 489–502 (2001). CASPubMed Google Scholar
Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta1451, 1–16 (1999). CASPubMed Google Scholar
Job, C. & Eberwine, J. Identification of sites for exponential translation in living dendrites. Proc. Natl Acad. Sci. USA published online 23 October 2001 (10.1073/pnas.231485698).Measured rates of dendritic translation and showed that sites of translation were heterogeneous and exponential in dendrites on agonist stimulation of metabotropic glutamate receptors, whereas translation in cell bodies was linear.
Fischer, M. et al. Rapid actin-based plasticity in dendritic spines. Neuron20, 847–854 (1998). CASPubMed Google Scholar
Lujan, R. et al. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat.13, 219–241 (1997). CASPubMed Google Scholar
Ong, W. Y. et al. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex. Exp. Brain Res.119, 367–374 (1998). CASPubMed Google Scholar
Ong, W. Y. et al. A light and electron microscopic study of GAT-1-positive cells in the cerebral cortex of man and monkey. J. Neurocytol.27, 719–730 (1998). CASPubMed Google Scholar
Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science273, 1402–1406 (1996).Proposed that protein synthesis in dendrites of hippocampal slices is important for some forms of synaptic plasticity. CASPubMed Google Scholar
Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science288, 1254–1256 (2000). CASPubMed Google Scholar
Ouyang, Y. et al. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci.19, 7823–7833 (1999). CASPubMedPubMed Central Google Scholar
Sheetz, A. J., Nairn, A. C. & Constantine-Paton, M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neurosci.3, 211–216 (2000). Google Scholar
Steward, O. & Halpain, S. Lamina-specific synaptic activation causes domain-specific alterations in dendritic immunostaining for MAP2 and CAM kinase II. J. Neurosci.19, 7834–7845 (1999). CASPubMedPubMed Central Google Scholar
Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron21, 1129–1139 (1998). CASPubMed Google Scholar
Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science274, 1678–1683 (1996). CASPubMed Google Scholar
Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature385, 533–536 (1997). CASPubMed Google Scholar
Frey, U. & Morris, R. G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci.21, 181–188 (1998). CASPubMed Google Scholar
Tiedge, H., Bloom, F. E. & Richter, D. RNA, whither goest thou? Science283, 186–187 (1999). CASPubMed Google Scholar
Alvarez, J., Giuditta, A. & Koenig, E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog. Neurobiol.62, 1–62 (2000). CASPubMed Google Scholar
Mohr, E. Subcellular RNA compartmentalization. Prog. Neurobiol.57, 507–525 (1999). CASPubMed Google Scholar
Chun, J. T. et al. Molecular cloning and characterization of a novel mRNA present in the squid giant axon. J. Neurosci. Res.49, 144–153 (1997). CASPubMed Google Scholar
Black, M. M. & Lasek, R. J. The presence of transfer RNA in the axoplasm of the squid giant axon. J. Neurobiol.8, 229–237 (1977). CASPubMed Google Scholar
Ingoglia, N. A. et al. Incorporation of 3H-amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA-mediated, post-translational protein modification in squid giant axons. J. Neurosci.3, 2463–2473 (1983). CASPubMedPubMed Central Google Scholar
Dirks, R. W. et al. Ultrastructural evidence for the axonal localization of caudodorsal cell hormone mRNA in the central nervous system of the mollusc Lymnaea stagnalis. Microsc. Res. Tech.25, 12–18 (1993). CASPubMed Google Scholar
Van Minnen, J. et al. De novo protein synthesis in isolated axons of identified neurons. Neuroscience80, 1–7 (1997). CASPubMed Google Scholar
Spencer, G. E. et al. Synthesis and functional integration of a neurotransmitter receptor in isolated invertebrate axons. J. Neurobiol.44, 72–81 (2000). CASPubMed Google Scholar
Yanow, S. K. et al. Biochemical pathways by which serotonin regulates translation in the nervous system of Aplysia. J. Neurochem.70, 572–583 (1998). CASPubMed Google Scholar
Schacher, S. et al. Expression and branch-specific export of mRNA are regulated by synapse formation and interaction with specific postsynaptic targets. J. Neurosci.19, 6338–6347 (1999). CASPubMedPubMed Central Google Scholar
Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell91, 927–938 (1997). CASPubMed Google Scholar
Sherff, C. M. & Carew, T. J. Coincident induction of long-term facilitation in Aplysia: cooperativity between cell bodies and remote synapses. Science285, 1911–1914 (1999). CASPubMed Google Scholar
Trembleau, A., Morales, M. & Bloom, F. E. Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: light and electron microscopic evidence. J. Neurosci. 14, 39–53 (1994). CASPubMedPubMed Central Google Scholar
Trembleau, A., Morales, M. & Bloom, F. E. Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience70, 113–125 (1996). CASPubMed Google Scholar
Jirikowski, G. F., Sanna, P. P. & Bloom, F. E. mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc. Natl Acad. Sci. USA87, 7400–7404 (1990). CASPubMedPubMed Central Google Scholar
Mohr, E., Meyerhof, W. & Richter, D. The hypothalamic hormone oxytocin: from gene expression to signal transduction. Rev. Physiol. Biochem. Pharmacol.121, 31–48 (1992). CASPubMed Google Scholar
Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell79, 1245–1255 (1994). CASPubMed Google Scholar
Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell79, 981–991 (1994). CASPubMed Google Scholar
Denis-Donini, S. et al. Localization of calcitonin gene-related peptide mRNA in developing olfactory axons. Cell Tissue Res.294, 81–91 (1998). CASPubMed Google Scholar
Koenig, E. et al. Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J. Neurosci.20, 8390–8400 (2000). CASPubMedPubMed Central Google Scholar
Macdonald, P. M. & Struhl, G. _cis_-acting sequences responsible for anterior localization of Bicoid mRNA in Drosophila embryos. Nature336, 595–598 (1988). CASPubMed Google Scholar
Melton, D. A. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature328, 80–82 (1987). CASPubMed Google Scholar
Mowry, K. L. & Melton, D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science255, 991–994 (1992). CASPubMed Google Scholar
Driever, W. & Nusslein-Volhard, C. The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell54, 95–104 (1988). CASPubMed Google Scholar
Dalby, B. & Glover, D. M. Discrete sequence elements control posterior pole accumulation and translational repression of maternal Cyclin B RNA in Drosophila. EMBO J.12, 1219–1227 (1993). CASPubMedPubMed Central Google Scholar
Eberwine, J. et al. mRNA expression analysis of tissue sections and single cells. J. Neurosci.21, 8310–8314 (2001). CASPubMedPubMed Central Google Scholar