Optical imaging of epileptiform and functional activity in human cerebral cortex (original) (raw)

Nature volume 358, pages 668–671 (1992)Cite this article

Abstract

OPTICAL imaging of animal somatosensory, olfactory and visual cortices has revealed maps of functional activity1–12. In non-human primates, high-resolution maps of the visual cortex have been obtained using only an intrinsic reflection signal3,4,6,13,14. Although the time course of the signal is slower than membrane potential changes, the maximum optical changes correspond to the maximal neuronal activity3,6. The intrinsic optical signal may represent the flow of ionic currents, oxygen delivery, changes in blood volume, potassium accumulation or glial swelling3,4,6,8,15–18. Here we use similar techniques to obtain maps from human cortex during stimulation-evoked epileptiform afterdischarges and cognitively evoked functional activity. Optical changes increased in magnitude as the intensity and duration of the afterdischarges increased. In areas surrounding the afterdischarge activity, optical changes were in the opposite direction and possibly represent an inhibitory surround. Large optical changes were found in the sensory cortex during tongue movement and in Broca's and Wernicke's language areas during naming exercises. The adaptation of high-resolution optical imaging for use on human cortex provides a new technique for investigation of the organization of the sensory and motor cortices, language, and other cognitive processes.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Blasdel, G. G. & Salama, G. Nature 321, 579–585 (1986).
    Article ADS CAS Google Scholar
  2. Bonhoeffer, T. & Grinvald, A. Nature 333, 429–431 (1991).
    Article ADS Google Scholar
  3. Frostig, R. D., Lieke, E. E., Ts'o, D. Y. & Grinvald, A. Proc. natn. Acad. Sci. U.S.A. 87, 6082–6086 (1990).
    Article ADS CAS Google Scholar
  4. Grinvald, A., Lieke, E. E., Frostig, F. D., Gilbert, C. D. & Wiesel, T. N. Nature 324, 361–364 (1986).
    Article ADS CAS Google Scholar
  5. Grinvald, A., Frostig, R. D., Lieke, E. E. & Hildesheim, R. Physiol. Rev. 68, 1285–1365 (1988).
    Article CAS Google Scholar
  6. Grinvald, A., Frostig, R. D., Siegel, R. M. & Bartfeld, E. Proc. natn. Acad. Sci. U.S.A. 88, 11559–11563 (1991).
    Article ADS CAS Google Scholar
  7. Kauer, J. S. Nature 331, 166–168 (1988).
    Article ADS CAS Google Scholar
  8. Lieke, E. E. et al. Rev. Physiol. 51, 543–559 (1989).
    Article CAS Google Scholar
  9. London, J. A., Cohen, L. B. & Wu, J. J. Neurosci. 9, 2182–2190 (1989).
    Article CAS Google Scholar
  10. Orbach, H. S. & Cohen, L. B. J. Neurosci. 3, 2251–2262 (1983).
    Article CAS Google Scholar
  11. Orbach, H. S., Cohen, L. B. & Grinvald, A. J. Neurosci. 5, 1886–1895 (1985).
    Article CAS Google Scholar
  12. Ts'o, D., Frostig, R. D., Lieke, E. E. & Grinvald, A. Science 249, 417–420 (1990).
    Article ADS CAS Google Scholar
  13. Haglund, M. M. & Blasdel, G. G. in Monitoring Neuronal Activity (ed. Stamford, J.) 85–114 (Oxford Univ. Press, London, 1991).
    Google Scholar
  14. Ratzlaff, E. H. & Grinvald, A. J. Neurosci. Meth. 36, 127–137 (1991).
    Article CAS Google Scholar
  15. Cohen, L. B. Physiol. Rev. 53, 373–418 (1973).
    Article CAS Google Scholar
  16. Cohen, L. B., Keynes, R. B. & Landowne, D. J. Physiol., Lond. 24, 727–752 (1972).
    Article Google Scholar
  17. Lipton, P. J. Physiol., Lond. 231, 365–383 (1973).
    Article CAS Google Scholar
  18. MacVicar, B. A. & Hochman, D. J. Neurosci. 11, 1458–1469 (1991).
    Article CAS Google Scholar
  19. Ojemann, G. A. Behav. Brain Sci. 6, 189–230 (1983).
    Article Google Scholar
  20. Ojemann, G. A. J. Neurosci. 11, 2281–2287 (1991).
    Article CAS Google Scholar
  21. Lee, B. I., Luders, H., Lesser, R. P., Dinner, D. S. & Morris, H. H. Ann. Neurol. 20, 32–37 (1986).
    Article CAS Google Scholar
  22. Colebatch, J. G., Deiber, M.-P., Passingham, R. E., Friston, K. J. & Frackowiak, R. S. J. J. Neurophysiol. 65, 1392–1401 (1991).
    Article CAS Google Scholar
  23. Raichle, M. E. in Handbook of Physiology: The Nervous System Vol. 5 (eds Mountcastle, V., Plum, F.) 643–673 (American Physiological Society, Bethesda, Maryland, 1987).
    Google Scholar
  24. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Nature 331, 585–589 (1991).
    Article ADS Google Scholar
  25. Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. Neuropsychologia 29, 1137–1148 (1991).
    Article CAS Google Scholar
  26. Broca, P. Bull. Soc. Anat. 36, 330–357 (1861).
    Google Scholar
  27. Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. Science 240, 1627–1631 (1988).
    Article ADS CAS Google Scholar
  28. Wohlberg, G. Digital Imaging Warping (IEEE Computer Society, Los Alamitos, California, 1988).
    Google Scholar
  29. Gonzalez, R. C. & Wintz, P. Digital Image Processing (Addison-Wesley, New York, 1987).
    MATH Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Neurological Surgery, RI-20, University of Washington, Seattle, Washington, 98195, USA
    Michael M. Haglund, George A. Ojemann & Daryl W. Hochman

Authors

  1. Michael M. Haglund
    You can also search for this author inPubMed Google Scholar
  2. George A. Ojemann
    You can also search for this author inPubMed Google Scholar
  3. Daryl W. Hochman
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Haglund, M., Ojemann, G. & Hochman, D. Optical imaging of epileptiform and functional activity in human cerebral cortex.Nature 358, 668–671 (1992). https://doi.org/10.1038/358668a0

Download citation

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.