Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption (original) (raw)
- Letter
- Published: 28 July 1994
Nature volume 370, pages 282–284 (1994)Cite this article
- 790 Accesses
- 3 Altmetric
- Metrics details
Abstract
SOILS currently consume about 30–40 Tg methane per year1,2, which is comparable to the net annual increase in atmospheric methane concentration from 1980 to 19903. Most soils consume methane2,4–9, but the extent varies with soil water content, land use and ammonium inputs5,10–13. Ammonium concentrations in many soils have increased in recent years as a result of land-use changes and increases in ammonium concentration in precipitation14,15. Ammonium strongly inhibits soil methane consumption, but the mechanism is uncertain. Even if enhanced ammonium concentrations are subsequently reduced, inhibition can still persist for months to years12,13. Here we show, from field and laboratory experiments, that the extent of ammonium inhibition increases with increasing methane concentration. We propose that nitrite formation from methanotrophic ammonium oxidation accounts for much of the observed inhibition, and that the persistence of inhibition with reduced ammonium concentrations is due to the limited capacity of methanotrophs to grow or recover in present concentrations of atmospheric methane. We suggest that past increases in atmospheric methane concentration may have increased the inhibitory effect of ammonium, thereby decreasing soil methane uptake capacity, and that this mechanism could also provide a positive feedback on future atmospheric methane concentrations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Dörr, H., Katruff, L. & Levin, I. Chemosphere 26, 697–705 (1993).
Article ADS Google Scholar - Striegl, R. G., McConnaughey, T. A., Thorstenson, D. C. & Woodward, J. C. Nature 357, 145–147 (1992).
Article ADS CAS Google Scholar - Steele, L. P., et al. Nature 358, 313–316 (1992).
Article ADS CAS Google Scholar - Keller, M., Groeau, T. J., Wofsy, S. C., Kaplan, W. A. & McElroy, M. B. Geophys. Res. Lett. 10, 1156–1159 (1983).
Article ADS CAS Google Scholar - Steudler, P. A., Bowden, R. D., Mellilo, J. M. & Aber, J. D. Nature 341, 314–316 (1989).
Article ADS Google Scholar - Born, M., Dörr, H. & Levin, I. Tellus 42B, 2–8 (1990).
Article Google Scholar - Whalen, S. C. & Reeburgh, W. S. Nature 346, 160–162 (1990).
Article ADS CAS Google Scholar - Adamsen, A. P. S. & King, G. M. Appl. envir. Microbiol. 59, 485–490 (1992).
Google Scholar - Crill, P. M. Globl. Biogeochem. Cycles. 4, 319–334 (1991).
Article ADS Google Scholar - Whalen, S. C., Reeburgh, W. S. & Sandbeck, K. A. Appl. envir. Microbiol. 56, 3405–3411 (1990).
CAS Google Scholar - Keller, M., Mitre, M. E. & Stallard, R. F. Globl. Biogeochem. Cycles 4, 21–27 (1990).
Article ADS CAS Google Scholar - Mosier, A., Schimel, D., Valentine, D., Bronson, K. & Parton, W. Nature 350, 330–332 (1991).
Article ADS CAS Google Scholar - Nesbit, S. P. & Breitenbeck, G. A. Agric. Ecosys. Envir. 41, 39–54 (1992).
Article CAS Google Scholar - Nihlgård, B. Ambio 14, 2–8 (1985).
Google Scholar - Willey, J. D. & Kiefer, R. H. J. Elisha Mitchell Sci. Soc. 109, 1–19 (1993).
Google Scholar - Söderström, B., Bååth, E., & Lundgren, B. Can. J. Microbiol. 29, 1500–1506 (1983).
Article Google Scholar - Keller, M., Veldkamp, E., Weitz, A. M. & Reiners, W. A. Nature 365, 244–246 (1993).
Article ADS CAS Google Scholar - Bédard, C. & Knowles, R. Microbiol. Rev. 53, 68–84 (1989).
PubMed PubMed Central Google Scholar - Hubley, J. H., Thomson, A. W. & Wilkinson, J. F. Arch. Mikrobiol. 95, 365–368 (1975).
Article Google Scholar - O'Neill, J. G. & Wilkinson, J. F. J. gen. Microbiol. 100, 407–412 (1977).
Article CAS Google Scholar - Dalton, H. Arch. Mikrobiol. 114, 273–279 (1977).
Article CAS Google Scholar - Yoshinari, T. Can. J. Microbiol. 31, 139–144 (1985).
Article CAS Google Scholar - Jollie, D. R. & Lipscomb, J. D. J. biol. Chem. 266, 21853–21863 (1991).
CAS PubMed Google Scholar - Bender, M. & Conrad, R. FEMS Microbiol. Ecol. 101, 261–270 (1992).
Article CAS Google Scholar - Koschorreck, M. & Conrad, R. Globl Biogeochem. Cycles 7, 109–121 (1993).
Article ADS CAS Google Scholar - Koch, A. L. Adv. microb. Ecol. 11, 37–70 (1990).
Article Google Scholar - Georgii, H. W., Rerseke, C. & Rohbock, E. Atmos. Envir. 18, 581–589 (1984).
Article CAS Google Scholar - King, G. M. & Adamsen, A. P. S. Appl. envir. Microbiol. 58, 2758–2763 (1992).
CAS Google Scholar
Author information
Authors and Affiliations
- Darling Marine Center, University of Maine, Walpole, Maine, 04573, USA
Gary M. King & Sylvia Schnell
Authors
- Gary M. King
You can also search for this author inPubMed Google Scholar - Sylvia Schnell
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
King, G., Schnell, S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption.Nature 370, 282–284 (1994). https://doi.org/10.1038/370282a0
- Received: 06 December 1993
- Accepted: 10 June 1994
- Issue Date: 28 July 1994
- DOI: https://doi.org/10.1038/370282a0