Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption (original) (raw)

Nature volume 370, pages 282–284 (1994)Cite this article

Abstract

SOILS currently consume about 30–40 Tg methane per year1,2, which is comparable to the net annual increase in atmospheric methane concentration from 1980 to 19903. Most soils consume methane2,4–9, but the extent varies with soil water content, land use and ammonium inputs5,10–13. Ammonium concentrations in many soils have increased in recent years as a result of land-use changes and increases in ammonium concentration in precipitation14,15. Ammonium strongly inhibits soil methane consumption, but the mechanism is uncertain. Even if enhanced ammonium concentrations are subsequently reduced, inhibition can still persist for months to years12,13. Here we show, from field and laboratory experiments, that the extent of ammonium inhibition increases with increasing methane concentration. We propose that nitrite formation from methanotrophic ammonium oxidation accounts for much of the observed inhibition, and that the persistence of inhibition with reduced ammonium concentrations is due to the limited capacity of methanotrophs to grow or recover in present concentrations of atmospheric methane. We suggest that past increases in atmospheric methane concentration may have increased the inhibitory effect of ammonium, thereby decreasing soil methane uptake capacity, and that this mechanism could also provide a positive feedback on future atmospheric methane concentrations.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Dörr, H., Katruff, L. & Levin, I. Chemosphere 26, 697–705 (1993).
    Article ADS Google Scholar
  2. Striegl, R. G., McConnaughey, T. A., Thorstenson, D. C. & Woodward, J. C. Nature 357, 145–147 (1992).
    Article ADS CAS Google Scholar
  3. Steele, L. P., et al. Nature 358, 313–316 (1992).
    Article ADS CAS Google Scholar
  4. Keller, M., Groeau, T. J., Wofsy, S. C., Kaplan, W. A. & McElroy, M. B. Geophys. Res. Lett. 10, 1156–1159 (1983).
    Article ADS CAS Google Scholar
  5. Steudler, P. A., Bowden, R. D., Mellilo, J. M. & Aber, J. D. Nature 341, 314–316 (1989).
    Article ADS Google Scholar
  6. Born, M., Dörr, H. & Levin, I. Tellus 42B, 2–8 (1990).
    Article Google Scholar
  7. Whalen, S. C. & Reeburgh, W. S. Nature 346, 160–162 (1990).
    Article ADS CAS Google Scholar
  8. Adamsen, A. P. S. & King, G. M. Appl. envir. Microbiol. 59, 485–490 (1992).
    Google Scholar
  9. Crill, P. M. Globl. Biogeochem. Cycles. 4, 319–334 (1991).
    Article ADS Google Scholar
  10. Whalen, S. C., Reeburgh, W. S. & Sandbeck, K. A. Appl. envir. Microbiol. 56, 3405–3411 (1990).
    CAS Google Scholar
  11. Keller, M., Mitre, M. E. & Stallard, R. F. Globl. Biogeochem. Cycles 4, 21–27 (1990).
    Article ADS CAS Google Scholar
  12. Mosier, A., Schimel, D., Valentine, D., Bronson, K. & Parton, W. Nature 350, 330–332 (1991).
    Article ADS CAS Google Scholar
  13. Nesbit, S. P. & Breitenbeck, G. A. Agric. Ecosys. Envir. 41, 39–54 (1992).
    Article CAS Google Scholar
  14. Nihlgård, B. Ambio 14, 2–8 (1985).
    Google Scholar
  15. Willey, J. D. & Kiefer, R. H. J. Elisha Mitchell Sci. Soc. 109, 1–19 (1993).
    Google Scholar
  16. Söderström, B., Bååth, E., & Lundgren, B. Can. J. Microbiol. 29, 1500–1506 (1983).
    Article Google Scholar
  17. Keller, M., Veldkamp, E., Weitz, A. M. & Reiners, W. A. Nature 365, 244–246 (1993).
    Article ADS CAS Google Scholar
  18. Bédard, C. & Knowles, R. Microbiol. Rev. 53, 68–84 (1989).
    PubMed PubMed Central Google Scholar
  19. Hubley, J. H., Thomson, A. W. & Wilkinson, J. F. Arch. Mikrobiol. 95, 365–368 (1975).
    Article Google Scholar
  20. O'Neill, J. G. & Wilkinson, J. F. J. gen. Microbiol. 100, 407–412 (1977).
    Article CAS Google Scholar
  21. Dalton, H. Arch. Mikrobiol. 114, 273–279 (1977).
    Article CAS Google Scholar
  22. Yoshinari, T. Can. J. Microbiol. 31, 139–144 (1985).
    Article CAS Google Scholar
  23. Jollie, D. R. & Lipscomb, J. D. J. biol. Chem. 266, 21853–21863 (1991).
    CAS PubMed Google Scholar
  24. Bender, M. & Conrad, R. FEMS Microbiol. Ecol. 101, 261–270 (1992).
    Article CAS Google Scholar
  25. Koschorreck, M. & Conrad, R. Globl Biogeochem. Cycles 7, 109–121 (1993).
    Article ADS CAS Google Scholar
  26. Koch, A. L. Adv. microb. Ecol. 11, 37–70 (1990).
    Article Google Scholar
  27. Georgii, H. W., Rerseke, C. & Rohbock, E. Atmos. Envir. 18, 581–589 (1984).
    Article CAS Google Scholar
  28. King, G. M. & Adamsen, A. P. S. Appl. envir. Microbiol. 58, 2758–2763 (1992).
    CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Darling Marine Center, University of Maine, Walpole, Maine, 04573, USA
    Gary M. King & Sylvia Schnell

Authors

  1. Gary M. King
    You can also search for this author inPubMed Google Scholar
  2. Sylvia Schnell
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

King, G., Schnell, S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption.Nature 370, 282–284 (1994). https://doi.org/10.1038/370282a0

Download citation