Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution (original) (raw)

Nature volume 374, pages 555–559 (1995)Cite this article

Abstract

VISUALIZATION of single actin filaments by fluorescence microscopy1led to the development of new in vitro assays for analysing actomyosin-based motility at the molecular level2-5. The ability to manipulate actin filaments with a microneedle6,7 or an optical trap8 combined with position-sensitive detectors has enabled direct measurements of nanometre displacements and piconewton forces exerted by individual myosin molecules. To elucidate how myosin generates movement, it is necessary to understand how ATP hydrolysis is coupled to mechanical work at the level of the single molecule. But the most sensitive microscopic ATPase assay available still requires over 1,000 myosins9. To enhance the sensitivity of such assays, we have refined epifluorescence and total internal reflection microscopies to visualize single fluorescent dye molecules. We report here that this approach can be used directly to image single fluorescently labelled myosin molecules and detect individual ATP turnover reactions. In contrast to previously reported single fluorescent molecule imaging methods, which used specimens immobilized on an air-dried surface10-12, our method allows video-rate imaging of single molecules in aqueous solution, and hence can be applied to the study of many types of enzymes and biomolecules.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).
    Article CAS ADS Google Scholar
  2. Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 6272–6276 (1986).
    Article CAS ADS Google Scholar
  3. Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).
    Article CAS ADS Google Scholar
  4. Harada, Y., Noguchi, A., Kishino, A. & Yanagida, T. Nature 326, 805–808 (1987).
    Article CAS ADS Google Scholar
  5. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).
    Article CAS ADS Google Scholar
  6. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Nature 352, 301–306 (1991).
    Article CAS ADS Google Scholar
  7. Ishijima, A. et al. Biochem. biophys. Res. Commun. 199, 1057–1063 (1994).
    Article CAS Google Scholar
  8. Finer, J. T., Simmons, R. M. & Spudich, J. A. Nature 368, 113–119 (1994).
    Article CAS ADS Google Scholar
  9. Sowerby, A. J., Seehra, C. K., Lee, M. & Bagshaw, C. R. J. molec. Biol. 234, 114–123 (1993).
    Article CAS Google Scholar
  10. Betzig, E. & Chichester, R. J. Science 262, 1422–1425 (1993).
    Article CAS ADS Google Scholar
  11. Trautman, J. K., Macklin, J. J. & Betzig, E. Nature 369, 40–42 (1994).
    Article CAS ADS Google Scholar
  12. Ishikawa, M., Hirano, K., Hayakawa, T., Hosoi, S. & Brenner, S. Jap. J. appl. Phys. 33, 1571–1576 (1994).
    Article CAS ADS Google Scholar
  13. Harada, Y. & Yanagida, T. Cell Motil. Cytoskel. 10, 71–76 (1988).
    Article CAS Google Scholar
  14. Southwick, P. L. et al. Cytometry 11, 418–430 (1990).
    Article CAS Google Scholar
  15. Axelrod, D. Meth. Cell Biol. 30, 245–270 (1989).
    Article CAS Google Scholar
  16. Yanagida, T., Arata, T. & Oosawa, F. Nature 316, 366–369 (1985).
    Article CAS ADS Google Scholar
  17. Huxley, H. E. J. biol. Chem. 265, 8347–8350 (1990).
    CAS PubMed Google Scholar
  18. Yanagida, T., Harada, Y. & Ishijima, A. Trends biochem. Sci. 18, 319–324 (1993).
    Article CAS Google Scholar
  19. Bagshaw, C. R. in Muscle Contraction 2nd edn (Chapman & Hall, London, 1993).
    Book Google Scholar
  20. Spudich, J. A. Nature 372, 515–518 (1994).
    Article CAS ADS Google Scholar
  21. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. J. molec. Biol. 216, 49–68 (1990).
    Article CAS Google Scholar
  22. Lowey, S., Waller, G. S. & Trybus, M. K. Nature 365, 454–456 (1993).
    Article CAS ADS Google Scholar
  23. Lindberg, M. & Mosbach, K. Eur. J. Biochem. 53, 481–486 (1975).
    Article CAS Google Scholar
  24. Kodama, T., Fukui, K. & Kometani, K. J. Biochem. (Tokyo) 99, 1465–1472 (1986).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. BioMotron Project, ERATO, JRDC, Senba-higashi 2-4-14, Mino, Osaka, 562, Japan
    Takashi Funatsu, Yoshie Harada, Makio Tokunaga, Kiwamu Saito & Toshio Yanagida
  2. Department of Biophysical Engineering, Osaka University, Toyonaka, Osaka, 560, Japan
    Toshio Yanagida

Authors

  1. Takashi Funatsu
    You can also search for this author inPubMed Google Scholar
  2. Yoshie Harada
    You can also search for this author inPubMed Google Scholar
  3. Makio Tokunaga
    You can also search for this author inPubMed Google Scholar
  4. Kiwamu Saito
    You can also search for this author inPubMed Google Scholar
  5. Toshio Yanagida
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Funatsu, T., Harada, Y., Tokunaga, M. et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution.Nature 374, 555–559 (1995). https://doi.org/10.1038/374555a0

Download citation

This article is cited by