A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans (original) (raw)

Nature volume 375, pages 73–78 (1995)Cite this article

Abstract

PROCESSING and storage of information by the nervous system requires the ability to modulate the response of excitable cells to neurotransmitter. A simple process of this type, known as adaptation or desensitization, occurs when prolonged stimulation triggers processes that attenuate the response to neurotransmitter. Here we report that the Caenorhabditis elegans gene unc-2 is required for adaptation to two neurotransmitters, dopamine and serotonin. A loss-of-function mutation in unc-2 resulted in failure to adapt either to paralysis by dopamine or to stimulation of egg laying by serotonin. In addition, unc-2 mutants displayed behaviours similar to those induced by serotonin treatment. We found that unc-2 encodes a homologue of a voltage-sensitive calcium-channel α-1 subunit. Expression of unc-2 occurs in two types of neurons implicated in the control of egg laying, a behaviour regulated by serotonin. Unc-2 appears to be required in modulatory neurons to downregulate the response of the egg-laying muscles to serotonin. We propose that adaptation to serotonin occurs through activation of an Unc-2-dependent calcium influx, which modulates the post-synaptic response to serotonin, perhaps by inhibiting the release of a potentiating neuropeptide.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Sulston, J., Dew, M. & Brenner, S. J. comp. Neurol. 163, 215–226 (1975).
    Article CAS PubMed Google Scholar
  2. Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. & Evans, P. D. Science 216, 1012–1014 (1982).
    Article ADS CAS PubMed Google Scholar
  3. Avery, L. & Horvitz, H. R. J. exp. Zool. 253, 263–270 (1990).
    Article CAS PubMed Google Scholar
  4. Loer, C. M. & Kenyon, C. J. J. Neurosci. 13, 5407–5417 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  5. Desai, C., Garriga, G., Mclntire, S. & Horvitz, H. R. Nature 336, 638–646 (1988).
    Article ADS CAS PubMed Google Scholar
  6. Brenner, S. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  7. Avery, L. Genetics 133, 897–917 (1993).
    CAS PubMed PubMed Central Google Scholar
  8. Snutch, T. P., Tomlinson, W. J., Leonard, J. P. & Gilbert, M. M. Neuron 7, 45 (1991).
    Article CAS PubMed Google Scholar
  9. Starr, T. V. B., Prystay, W. & Snutch, T. P. Proc. natn. acad. Sci. U.S.A. 88, 5621 (1991).
    Article ADS CAS Google Scholar
  10. Dubel, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5058–5062 (1992).
    Article ADS CAS Google Scholar
  11. Soong, T. W. et al. Science 260, 1133–1136 (1993).
    Article ADS CAS PubMed Google Scholar
  12. Hofmann, F., Biel, M. & Flockerzi, V. A. Rev. Neurosci. 17, 399–418 (1994).
    Article CAS Google Scholar
  13. White, J., Southgate, E., Thomson, N. & Brenner, S. Phil. Trans. R. Soc. B314, 1–340 (1986).
    Article CAS Google Scholar
  14. Trent, C., Tsung, N. & Horvitz, H. R. Genetics 104, 619–647 (1983).
    CAS PubMed PubMed Central Google Scholar
  15. Schinkmann, K. & Li, C. J. comp. Neurol. 316, 251–260 (1992).
    Article CAS PubMed Google Scholar
  16. Herman, R. K. Genetics 108, 165–180 (1984).
    CAS PubMed PubMed Central Google Scholar
  17. Yandell, M. D., Edgar, L. G. & Wood, W. B. Proc. natn. Acad. Sci. U.S.A. 91, 1381–1385 (1994).
    Article ADS CAS Google Scholar
  18. Albertson, D. G. Genetics 134, 211–219 (1993).
    CAS PubMed PubMed Central Google Scholar
  19. Zhao, C. & Emmons, S. W. Nature 373, 74–78 (1995).
    Article ADS CAS PubMed Google Scholar
  20. Seydoux, G. & Fire, A. Development 120, 2823–2834 (1994).
    CAS PubMed Google Scholar
  21. Seydoux, G. & Fire, A. Meth. Cell Biol. (in the press).
  22. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. Devl Biol. 100, 64–119 (1983).
    Article CAS Google Scholar
  23. Akerib, C. C. & Meyer, B. Genetics 138, 1105–1125 (1994).
    CAS PubMed PubMed Central Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, 94143-0554, USA
    William R. Schafer & Cynthia J. Kenyon

Authors

  1. William R. Schafer
    You can also search for this author inPubMed Google Scholar
  2. Cynthia J. Kenyon
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Schafer, W., Kenyon, C. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans.Nature 375, 73–78 (1995). https://doi.org/10.1038/375073a0

Download citation

This article is cited by