Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells (original) (raw)

References

  1. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).
    Article CAS Google Scholar
  2. Suda, T. et al. Expression of the Fas ligand in cells of the T lineage. J. Immunol. 154, 3806–3813 (1995).
    CAS Google Scholar
  3. Hahne, M. et al. Activated B cells express functional Fas ligand. Eur. J. Immunol. 26, 721–724 (1996).
    Article CAS Google Scholar
  4. Saas, P. et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain. J. Clin. Invest. 99, 1173–1178 (1997).
    Article CAS Google Scholar
  5. Arase, H., Arase, N. & Saito, T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181, 1235– 1238 (1995).
    Article CAS Google Scholar
  6. Ju, S.T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 345–348 (1995).
    Article Google Scholar
  7. Dhein, J., Walczak, H., Baumler, C., Debatin, K.-M. & Krammer, P.H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–440 (1995).
    Article CAS Google Scholar
  8. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 342–345 (1995).
    Article Google Scholar
  9. Renno, T., Hahne, M., Tschopp, J. & MacDonald, H.R. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. J. Exp. Med. 183, 431–437 (1996).
    Article CAS Google Scholar
  10. Kimura, M. & Matsuzawa, A. Autoimmunity in mice bearing lpr.cg: a novel mutant gene. Int. Rev. Immunol. 11, 193–210 (1994).
    Article CAS Google Scholar
  11. Hahne, M. et al. Characterization of the non-functional Fas ligand of gld mice. Int. Immunol. 7, 1381– 1386 (1995).
    Article CAS Google Scholar
  12. Chervonsky, A.V. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).
    Article CAS Google Scholar
  13. Kondo, T., Suda, T., Fukuyama, H., Adachi, M. & Nagata, S. Essential role of the Fas ligand in the development of hepatitis. Nature Med. 3, 409– 413 (1997).
    Article CAS Google Scholar
  14. Giordano, C. et al. Potential Involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 275, 960–963 (1997).
    Article CAS Google Scholar
  15. Itoh, N. et al. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 186, 613–618 (1997).
    Article CAS Google Scholar
  16. Hahne, M. et al. Melanoma cell expression of Fas(Apo-a/CD95) Ligand: Implications for tumor immune escape. Science 274, 1363–1366 (1996).
    Article CAS Google Scholar
  17. O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075– 1082 (1996).
    Article CAS Google Scholar
  18. Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res. 57, 1007–1012 (1997).
    CAS PubMed Google Scholar
  19. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).
    Article CAS Google Scholar
  20. Seino, K., Kayagaki, N., Okumura, K. & Yagita, H. Anti-tumor effect of locally produced CD95L. Nature Med. 3, 165–170 (1997).
    Article CAS Google Scholar
  21. Arai, H., Chan, S.Y., Bishop, D.K. & Nabel, G.J. Inhibition of the alloantibody response by CD95 ligand. Nature Med. 3, 843–848 (1997).
    Article CAS Google Scholar
  22. Corry, D.B., Reiner, S.L., Linsley, P.S. & Locksley, R.M. Differential Effects of Blockade of CD28-B7 on the Development of Th1 or Th2 Effector Cells in Experimental Leishmaniasis. J. Immunol. 153, 4142–4148 (1994).
    CAS Google Scholar
  23. Kaneko, S., Suzuki, N., Koizumi, H., Yamamoto, S. & Sakane, T. Rescue by cytokines of apoptotic cell death induced by IL-2 deprivation of human antigen-specific T cell clones. Clin. Exp. Immunol. 109, 185–193 (1997).
    Article CAS Google Scholar
  24. Dou, Q.P., An, B., Antoku, K. & Johnson, D.E. Fas stimulation induces RB dephosphorylation and proteolysis that is blocked by inhibitors of the ICE protease family. J. Cell. Biochem. 64, 586–594 (1997).
    Article CAS Google Scholar
  25. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).
    Article CAS Google Scholar
  26. Chu, J.L. et al. Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome. J. Exp. Med. 181, 393– 398 (1995).
    Article CAS Google Scholar
  27. Herman, A., Kappler, J., Marrack, P. & Pullen, A.M. Superantigens: Mechanisms of T-Cell Stimulation and Role in Immune Responses. Ann. Rev. Immunol. 9, 745–772 (1991).
    Article CAS Google Scholar
  28. Jardetzky, T.S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718 (1994).
    Article CAS Google Scholar
  29. Krummel, M.F. & Allison, J.P. CTLA-4 Engagement Inhibits IL-2 Accumulation and Cell-cycle Progression upon Activation of Resting T cells. J. Exp. Med. 183, 2533– 2540 (1996).
    Article CAS Google Scholar
  30. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–463 (1995).
    Article CAS Google Scholar
  31. Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 Ligation Blocks CD28-dependent T Cell Activation. J. Exp. Med. 183, 2541– 2550 (1996).
    Article CAS Google Scholar
  32. Suzuki, I. & Fink, P.J. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas Ligand. J. Exp. Med. 187, 123–128 (1998).
    Article CAS Google Scholar
  33. Hutchings, P. et al. The regulation of autoimmunity through CD4+ T cells. Autoimmunity 15, 21–23 (1993).
    Article Google Scholar
  34. Chandler, C. & Passaro, E., Jr. Transplant Rejection. Mechanisms and treatment. Arch. Surgery 128, 279– 283 (1993).
    Article CAS Google Scholar
  35. Prud'homme, G.J. & Vanier, L.E. Cyclosporine, tolerance, and autoimmunity. Clin. Immunol. Immunopathol. 66, 185–192 (1993).
    Article CAS Google Scholar
  36. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).
    Article CAS Google Scholar
  37. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D.L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci. USA 94, 3943– 3947 (1997).
    Article CAS Google Scholar
  38. Seino, K., Kayagaki, N., Fukao, K., Okumura, K. & Yagita, H. Rejection of Fas ligand-expressing grafts. Transplant. Proc. 29, 1092–1093 (1997).
    Article CAS Google Scholar
  39. Kang, S.-M. et al. Fas ligand expression in islet of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).
    Article CAS Google Scholar
  40. Lau, H.T. & Stoeckert, C.J. FasL—Too much of a good thing? Nature Med. 3, 727– 728 (1997).
    Article CAS Google Scholar
  41. Gillis, S. & Smith, K.A. Long term culture of tumor-specific cytotoxic T cells. Nature 268, 154– 156 (1997).
    Article Google Scholar

Download references