The changing landscape of ischaemic brain injury mechanisms (original) (raw)
Coombs, P. J., Graham, S. A., Drickamer, K. & Taylor, M. E. Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands. J. Biol. Chem.280, 22993–22999 (2005). ArticleCASPubMed Google Scholar
Meldrum, B. Possible therapeutic applications of antagonists of excitatory amino acid neurotrans¬mitters. Clin. Sci.68, 113–122 (1985). ArticleCAS Google Scholar
Rothman, S. M. & Olney, J. W. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol.19, 105–111 (1986). ArticleCASPubMed Google Scholar
Choi, D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci.11, 465–469 (1988). ArticleCASPubMed Google Scholar
Nicholls, D. & Attwell, D. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci.11, 462–468 (1990). ArticlePubMed Google Scholar
Choi, D. W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci.18, 58–60 (1995). ArticleCASPubMed Google Scholar
Siesjo, B. K. Historical overview. Calcium, ischemia, and death of brain cells. Ann. NY Acad. Sci.522, 638–661 (1988). ArticleADSCASPubMed Google Scholar
Simon, R. P., Swan, J. H., Griffiths, T. & Meldrum, B. S. Blockade of _N_-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science226, 850–852 (1984). ArticleADSCASPubMed Google Scholar
Wieloch, T. Hypoglycemia-induced neuronal damage prevented by an _N_-methyl-D-aspartate antagonist. Science230, 681–683 (1985). ArticleADSCASPubMed Google Scholar
Buchan, A. M. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc. Brain Metab. Rev.2, 1–26 (1990). CASPubMed Google Scholar
Albers, G. W., Goldberg, M. P. & Choi, D. W. Do NMDA antagonists prevent neuronal injury? Yes. Arch Neurol49, 418–420 (1992). ArticleCASPubMed Google Scholar
Tang, C. M., Dichter, M. & Morad, M. Modulation of the _N_-methyl-D-aspartate channel by extracellular H+. Proc. Natl Acad. Sci. USA87, 6445–6449 (1990). ArticleADSCASPubMedPubMed Central Google Scholar
Aizenman, E., Lipton, S. A. & Loring, R. H. Selective modulation of NMDA responses by reduction and oxidation. Neuron2, 1257–1263 (1989). ArticleCASPubMed Google Scholar
Tong, G., Shepherd, D. & Jahr, C. E. Synaptic desensitization of NMDA receptors by calcineurin. Science267, 1510–1512 (1995). ArticleADSCASPubMed Google Scholar
Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T. & Huganir, R. L. Calmodulin mediates calcium¬dependent inactivation of N-methyl-D-aspartate receptors. Neuron21, 443–453 (1998). ArticleCASPubMed Google Scholar
McDonald, J. W. et al. Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J Neurosci18, 6290–6299 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci.17, 31–108 (1994). ArticleCASPubMed Google Scholar
Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V. & Zukin, R. S., GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders. Trends Neurosci.20, 464–470 (1997). ArticleCASPubMed Google Scholar
Ying, H. S. et al. Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J. Neurosci.17, 9536–9544 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P. & Honore, T. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science247, 571–574 (1990). ArticleADSCASPubMed Google Scholar
Yin, H. Z., Turetsky, D., Choi, D. W. & Weiss, J. H. Cortical neurones with Ca2+ permeable AMPA/ kainate channels display distinct receptor immunoreactivity and are GABAergic. Neurobiol. Dis.1, 43–49 (1994). ArticleCASPubMed Google Scholar
Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron12, 1281–1289 (1994). ArticleCASPubMed Google Scholar
Matute, C., Sanchez-Gomez, M. V., Martinez-Millan, L. & Miledi, R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl Acad. Sci. USA94, 8830–8835 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W. & Goldberg, M. P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nature Med.4, 291–297 (1998). ArticleCASPubMed Google Scholar
Frederickson, C. J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol.31, 145–238 (1989). ArticleCASPubMed Google Scholar
Sloviter, R. S. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation.Brain Res.330, 150–153 (1985). ArticleCASPubMed Google Scholar
Weiss, J. H., Hartley, D. M., Koh, J. Y. & Choi, D. W. AMPA receptor activation potentiates zinc neurotoxicity. Neuron10, 43–49 (1993). ArticleCASPubMed Google Scholar
Sensi, S. L. et al. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci17, 9554–9564 (1997). ArticleCASPubMedPubMed Central Google Scholar
Manev, H., Kharlamov, E., Uz, T., Mason, R. P. & Cagnoli, C. M. Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp. Neurol.146, 171–178 (1997). ArticleCASPubMed Google Scholar
Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S. & Weiss, J. H., Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl Acad. Sci. USA96, 2414–2419 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, J. & Diemer, N. H. Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett.109, 247–252 (1990). ArticleCASPubMed Google Scholar
Johansen, F. F., Tonder, N., Berg, M., Zimmer, J. & Diemer, N. H. Hypothermia protects somatostatinergic neurons in rat dentate hilus from zinc accumulation and cell death after cerebral ischemia. Mol. Chem. Neuropathol.18, 161–172 (1993). ArticleCASPubMed Google Scholar
Sorensen, J. C., Mattsson, B., Andreasen, A. & Johansson, B. B. Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res.812, 265–269 (1998). ArticleCASPubMed Google Scholar
Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol.68, 251–306 (1980). ArticleCASPubMed Google Scholar
Gwag, B. J. et al. Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience77, 393–401 (1997). ArticleCASPubMed Google Scholar
Johnson, E. M. Jr & Deckwerth, T. L. Molecular mechanisms of developmental neuronal death. Annu. Rev. Neurosci.16, 31–46 (1993). ArticleCASPubMed Google Scholar
Hengartner, M. O. & Horvitz, H. R. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev.4, 581–586 (1994). ArticleCASPubMed Google Scholar
Linnik, M. D., Zobrist, R. H. & Hatfield, M. D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke24, 2002–2008 (1993). ArticleCASPubMed Google Scholar
MacManus, J. P., Buchan, A. M., Hill, I. E., Rasquinha, I. & Preston, E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett.164, 89–92 (1993). ArticleCASPubMed Google Scholar
Van Lookeren Campagne, M. & Gill, R. Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat. Neurosci. Lett.213 111–114 (1996). ArticleCASPubMed Google Scholar
Martin, L. J. et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull.46, 281–309 (1998). ArticleCASPubMed Google Scholar
Merry, D. E. & Korsmeyer, S. J. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci.20, 245–267 (1997). ArticleCASPubMed Google Scholar
Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron13, 1017–1030 (1994). ArticleCASPubMed Google Scholar
Linnik, M. D., Zahos, P., Geschwind, M. D. & Federoff, H. J. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke26, 1670–1674 (1995). ArticleCASPubMed Google Scholar
Kitagawa, K. et al. Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke29, 2616–2621 (1998). ArticleCASPubMed Google Scholar
Xue, D., Shaham, S. & Horvitz, H. R., Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev.10, 1073–1083 (1996). ArticleCASPubMed Google Scholar
Namura, S. et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci.18, 3659–3668 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hara, H. et al. Inhibition of interleukin 1b converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl Acad. Sci. USA94, 2007–2012 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
Chen, J. et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci.18, 4914–4928 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gottron, F. J., Ying, H. S. & Choi, D. W. Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell. Neurosci.9, 159–169 (1997). ArticleCASPubMed Google Scholar
Rothwell, N., Allan, S. & Toulmond, S. The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J. Clin. Invest.100, 2648–2652 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with _N_-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA
Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y. & Choi, D. W. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab.16, 195–201 (1996). ArticleCASPubMed Google Scholar
Cheng, Y. et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest.101, 1992–1999 (1998). ArticleCASPubMedPubMed Central Google Scholar
McDonald, J. W., Behrens, M. I., Chung, C., Bhattacharyya, T. & Choi, D. W. Susceptibility to apoptosis is enhanced in immature cortical neurons. Brain. Res.759, 228–232 (1997). ArticleCASPubMed Google Scholar
Gwag, B. J. et al. Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons. Neuroscience90, 1339–1348 (1999). ArticleCASPubMed Google Scholar
Bindokas, V. P. & Miller, R. J. Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons. J. Neurosci.15, 6999–7011 (1995). ArticleCASPubMedPubMed Central Google Scholar
McConkey, D. J. & Orrenius, S. The role of calcium in the regulation of apoptosis. J. Leukoc. Biol.59, 775–783 (1996). ArticleCASPubMed Google Scholar
Lampe, P. A., Cornbrooks, E. B., Juhasz, A., Johnson, E. M. Jr & Franklin, J. L. Suppression of programmed neuronal death by a thapsigargin-induced Ca2+ influx. J. Neurobiol.26, 205–212 (1995). ArticleCASPubMed Google Scholar
Balazs, R., Jorgensen, O. S. & Hack, N. _N_-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience27, 437–451 (1988). ArticleCASPubMed Google Scholar
Koike, T. & Tanaka, S. Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Ca2+. Proc. Natl Acad. Sci. USA88, 3892–3896 (1991). ArticleADSCASPubMedPubMed Central Google Scholar
Hyrc, K., Handran, S. D., Rothman, S. M. & Goldberg, M. P. Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J. Neurosci.17, 6669–6677 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lipton, S. A. & Kater, S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci.12, 265–270 (1989). ArticleCASPubMed Google Scholar
Connor, J. A. et al. Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J. Neurophysiol.81, 299–306 (1999). ArticleCASPubMed Google Scholar
Koh, J. Y. & Cotman, C. W. Programmed cell death: its possible contribution to neurotoxicity mediated by calcium channel antagonists. Brain Res.587, 233–240 (1992). ArticleCASPubMed Google Scholar
Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science283, 70–74 (1999). ArticleADSCASPubMed Google Scholar
Yu, S. P. et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science278, 114–117 (1997). ArticleCASPubMed Google Scholar
Beauvais, F., Michel, L. & Dubertret, L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J. Leukoc. Biol.57, 851–855 (1995). ArticleCASPubMed Google Scholar
Bortner, C. D., Hughes, F. M. J. Jr & Cidlowski, J. A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem.272, 32436–32442 (1997). ArticleCASPubMed Google Scholar
Du, C. et al. Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res.718, 233–236 (1996). ArticleCASPubMed Google Scholar
Ma, J., Endres, M. & Moskowitz, M. A. Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br. J. Pharmacol.124, 756–762 (1998). ArticleCASPubMedPubMed Central Google Scholar
Portera-Cailliau, C., Price, D. L. & Martin, L. J. _N_-methyl-D-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies. J. Neurochem.66, 692–700 (1996). ArticleCASPubMed Google Scholar
Kew, J. N., Trube, G. & Kemp, J. A. A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J. Physiol. (Lond.)497, 761–772 (1996). ArticleCAS Google Scholar
Ginsberg, M. D., Sternau, L. L., Globus, M. Y., Dietrich, W. D. & Busto, R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc. Brain Metab. Rev.4, 189–225 (1992). CASPubMed Google Scholar
Auer, R. N. Calcium channel antagonists in cerebral ischemia: a review. Drugs Dev.2, 307–317 (1993). CAS Google Scholar
Hartnett, K. A. et al. NMDA receptor-mediated neurotoxicity: a paradoxical requirement for extracellular Mg2+ in Na+/Ca2+-free solutions in rat cortical neurons in vitro. J. Neurochem.68, 1836–1845 (1997). ArticleCASPubMed Google Scholar
Irwin, R. P., Lin, S. Z., Long, R. T. & Paul, S. M. _N_-methyl-D-aspartate induces a rapid, reversible, and calcium-dependent intracellular acidosis in cultured fetal rat hippocampal neuronsM. J. Neurosci.14, 1352–1357 (1994). ArticleCASPubMedPubMed Central Google Scholar
Samdani, A. F., Dawson, T. M. & Dawson, V. L. Nitric oxide synthase in models of focal ischemia. Stroke28, 1283–1288 (1997). ArticleCASPubMed Google Scholar
Szabo, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci.19, 287–298 (1998). ArticleCASPubMed Google Scholar
Markgraf, C. G. et al. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke29, 152–158 (1998). ArticleCASPubMed Google Scholar
Zhao, Q., Pahlmark, K., Smith, M. L. & Siesjo, B. K. Delayed treatment with the spin trap alpha-phenyl-_N_-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol. Scand.152, 349–350 (1994). ArticleCASPubMed Google Scholar
Nagayama, M., Zhang, F. & Iadecola, C. Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J. Cereb. Blood Flow Metab.18, 1107–1113 (1998). ArticleCASPubMed Google Scholar
Waxman, S. G., Black, J. A., Ransom, B. R. & Stys, P. K. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Res.644, 197–204 (1994). ArticleCASPubMed Google Scholar
Ivins, K. J., Bui, E. T. & Cotman, C. W. β-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis.5, 365–378 (1998). ArticleCASPubMed Google Scholar
Mattson, M. P., Keller, J. N. & Begley, J. G. Evidence for synaptic apoptosis. Exp. Neurol.153, 35–48 (1998). ArticleCASPubMed Google Scholar
Zhang, R. L. et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology44, 1747–1751 (1994). ArticleCASPubMed Google Scholar
Betz, A. L., Yang, G. Y. & Davidson, B. L. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J. Cereb. Blood Flow Metab.15, 547–551 (1995). ArticleCASPubMed Google Scholar
Koh, J. Y., Gwag, B. J., Lobner, D. & Choi, D. W. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science268, 573–575 (1995). ArticleADSCASPubMed Google Scholar
Gwag, B. J. et al. BDNF or IGF-I potentiates free radical-mediated injury in cortical cell cultures. NeuroReport7, 93–96 (1995). ArticleCASPubMed Google Scholar
Koketsu, N. et al. Pretreatment with intraventricular basic fibroblast growth factor decreases infarct size following focal cerebral ischemia in rats. Ann. Neurol.35, 451–457 (1994). ArticleCASPubMed Google Scholar
Snyder, S. H., Lai, M. M. & Burnett, P. E. Immunophilins in the nervous system. Neuron21, 283–294 (1998). ArticleCASPubMed Google Scholar
Endres, M. et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA95, 8880–8885 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Toung, T. J. K., Traystman, R. J. & Hurn, P. D. Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke29, 1666–1670 (1998). ArticleCASPubMed Google Scholar
Guillemin, K. & Krasnow, M. A. The hypoxic response: huffing and HIFing. Cell89, 9–12 (1997). ArticleCASPubMed Google Scholar
Frerichs, K. U. & Hallenbeck, J. M. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J. Cereb. Blood Flow Metab.18, 168–175 (1998). CAS Google Scholar