O'Connell, J. B. & Bristow, M. R. Economic impact of heart failure in the United States: time for a different approach. J. Heart Lung Transplant13, S107–S112 (1994). CASPubMed Google Scholar
Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation93, 841–842 (1996). ArticleCASPubMed Google Scholar
Kushwaha, S. S., Fallon, J. T. & Fuster, V. Restrictive cardiomyopathy. N. Engl. J. Med.336, 267–276 (1997). ArticleCASPubMed Google Scholar
Corrado, D. et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol.30, 1512–1520 (1997). ArticleCASPubMed Google Scholar
Thiene, G., Nava, A., Corrado, D., Rossi, L. & Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med.318, 129–133 (1988). ArticleCASPubMed Google Scholar
Furlanello, F. et al. Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia. Pacing Clin. Electrophysiol.21, 331–335 (1998). ArticleCASPubMed Google Scholar
Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. Circulation80, 564–572 (1989). ArticleCASPubMed Google Scholar
Abelman, W. H. & Lorrell, B. H. The challenge of cardiomyopathy. J. Am. Coll. Cardiol.13, 1219 (1989). Article Google Scholar
Towbin, J. A. in The Molecular and Clinical Genetics of Cardiac Electrophysiological Disease Ch. 13 (eds Berul, C. I. & Towbin, J. A.) 195–218 (Kluwer Academic, Norwell, MA, 2000). Book Google Scholar
Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation93, 841–842 (1996).
Gillum, R. F. Idiopathic cardiomyopathy in the United States. Am. Heart J.111, 752–755 (1986). ArticleCASPubMed Google Scholar
Grunig, E. et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol.31, 186–194 (1998). ArticleCASPubMed Google Scholar
Durand, J. B. et al. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation92, 3387–3389 (1995). ArticleCASPubMed Google Scholar
Siu, B. L. et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation99, 1022–1026 (1999). ArticleCASPubMed Google Scholar
Li, D. et al. Desmin mutations responsible for idiopathic dilated cardiomyopathy. Circulation100, 461–464 (1999). ArticleCASPubMed Google Scholar
Barresi, R. et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β-sarcoglycan mutations. J. Med. Genet.37, 102–107 (2000) ArticleCASPubMedPubMed Central Google Scholar
Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest.106, 655–662 (2000). ArticleCASPubMedPubMed Central Google Scholar
Krajinovic, M. et al. Linkage of familial dilated cardiomyopathy to chromosome 9. Am. J. Hum. Genet.57, 846–852 (1995). CASPubMedPubMed Central Google Scholar
Bowles, K. R. et al. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21–23. J. Clin. Invest.98, 1355–1360 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kamisago, M. et al. Mutations in sarcomeric protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med.343, 1688–1696 (2000). ArticleCASPubMed Google Scholar
Olson, T. M., Kishimoto, N. Y., Whitby, F. G. & Michels, V. V. Mutations that alter the surface change of α-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol.33, 723–732 (2001). ArticleCASPubMed Google Scholar
Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science280, 750–752 (1998). ArticleADSCASPubMed Google Scholar
Mogensen, J. et al. α-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest.103, R39–R43 (1999). ArticleCASPubMedPubMed Central Google Scholar
Thierfelder, L. et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell77, 701–712 (1994). ArticlePubMed Google Scholar
Carlsson, L. & Thornell, L.-E. Desmin-related myopathies in mice and man. Acta Physiol. Scand.171, 341–348 (2001). ArticleCASPubMed Google Scholar
Hack, A. A., Groh, M. E. & McNally, E. M. Sarcoglycans in muscular dystrophy. Microsc. Res. Tech.48, 167–180 (2000). ArticleCASPubMed Google Scholar
Sakamoto, A. et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl Acad. Sci. USA94, 13873–13878 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell98, 465–474 (1999). ArticleCASPubMed Google Scholar
Kass S. et al. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1–1q1. Nature Genet.7, 546–551 (1994). ArticleCASPubMed Google Scholar
Jung, M. et al. Investigation of a family with autosomal dominant dilated cardiomyopathy defines a novel locus on chromosome 2q14–q22. Am. J. Hum. Genet.65, 1068–1077 (1999). ArticleCASPubMedPubMed Central Google Scholar
Messina, D. N., Speer, M. C., Pericak-Vance, M. A. & McNally, E. M. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am. J. Hum. Genet.61, 909–917 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutant in the α-cardiac myosin heavy chain gene. J. Clin. Invest.103, 147–153 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation101, 473–476 (2000). ArticleCASPubMed Google Scholar
Berko, B. A. & Swift, M. X-linked dilated cardiomyopathy. N. Engl. J. Med.316, 1186–1191 (1987). ArticleCASPubMed Google Scholar
Towbin, J. A. et al. X-linked dilated cardiomyopathy (XLCM): molecular genetic evidence of linkage to the Duchenne muscular dystrophy gene at the Xp21 locus. Circulation87, 1854–1865 (1993). ArticleCASPubMed Google Scholar
Muntoni, F. et al. Brief report: deletion of the dystrophin muscle-specific promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med.329, 921–925 (1993). ArticleCASPubMed Google Scholar
Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell51, 919–928 (1987). ArticleCASPubMed Google Scholar
Meng, H., Leddy, J. J., Frank, J., Holland, P. & Tuana, B. S. The association of cardiac dystrophin with myofibrils/z-discs regions in cardiac muscle suggests a novel role in the contractile apparatus. J. Biol. Chem.271, 12364–12371 (1996). ArticleCASPubMed Google Scholar
Kaprielian, R. R., Stevenson, S., Rothery, S. M., Cullen, M. J. & Severs, N. J. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation101, 2586–2594 (2000). ArticleCASPubMed Google Scholar
Campbell, K. P. Three muscular dystrophies: loss of cytoskeleton–extracellular matrix linkage. Cell80, 675–679 (1995). ArticleCASPubMed Google Scholar
Cox, G. F. & Kunkel, L. M. Dystrophies and heart disease. Curr. Opin. Cardiol.12, 329–343 (1997). ArticleCASPubMed Google Scholar
Allamand, V. & Campbell, K. P. Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum. Mol. Genet.9, 2459–2467 (2000). ArticleCASPubMed Google Scholar
Heydemann, A., Wheeler, M. T. & McNally, E. M. Cardiomyopathy in animal models of muscular dystrophy. Curr. Opin. Cardiol.16, 211–217 (2001). ArticleCASPubMed Google Scholar
Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeny, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA90, 3710–3714 (1993). ArticleADSCASPubMedPubMed Central Google Scholar
Towbin, J. A. The role of cytoskeletal proteins in cardiomyopathies. Curr. Opin. Cell Biol.10, 131–139 (1998). ArticleCASPubMed Google Scholar
Bowles, N. E., Bowles, K. R. & Towbin, J. A. The “Final Common Pathway” hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy. Herz25, 168–175 (2000). ArticleCASPubMed Google Scholar
Barth, P. G. et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci.62, 327–355 (1983). ArticleCASPubMed Google Scholar
Kelley, R. I. et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J. Pediatr.119, 738–747 (1991). ArticleCASPubMed Google Scholar
Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genet.12, 385–389 (1996). ArticleCASPubMed Google Scholar
D'Adamo, P. et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet.61, 862–867 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bleyl, S. B. et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet.61, 868–872 (1997). ArticleCASPubMedPubMed Central Google Scholar
Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell88, 393–403 (1997). ArticleCASPubMed Google Scholar
Badorff, C. et al. Enteroviral protease 2A cleaves dystrophin's evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med.5, 320–326 (1999). ArticleCASPubMed Google Scholar
Jarcho, J. A. et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med.321, 1372–1378 (1989). ArticleCASPubMed Google Scholar
Towbin, J. A. Molecular genetics of hypertrophic cardiomyopathy. Curr. Cardiol. Rep.2, 134–140 (2000). ArticleCASPubMed Google Scholar
Mann, C. J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl Acad. Sci. USA98, 42–47 (2001). ADSCASPubMed Google Scholar
Ahmad, A., Brinson, M., Hodges, B. L., Chamberlain, J. S. & Amalfitano, A. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum. Mol. Genet.9, 2507–2515 (2000). ArticleCASPubMed Google Scholar
Nowak, K. J. et al. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet.23, 208–212 (1999). ArticleCASPubMed Google Scholar
Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation103, 1256–1263 (2001). ArticleCASPubMed Google Scholar
Dalloz, F., Osinska, H. & Robbins, J. Manipulating the contractile apparatus: genetically defined animal models of cardiovascular disease. J. Mol. Cell. Cardiol.33, 9–25 (2001). ArticleCASPubMed Google Scholar
Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α-cardiac myosin heavy chain gene. J. Clin. Invest.103, 147–153 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kittleson, M. D. et al. Familial hypertrophic cardiomyopathy in Main Coon cats. An animal model of human disease. Circulation99, 3172–3180 (1999). ArticleCASPubMed Google Scholar
Shou, W. et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature391, 489–492 (1998). ArticleADSCASPubMed Google Scholar
Grady, R. M. et al. Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nature Cell Biol.1, 215–220 (1999). ArticleCASPubMed Google Scholar
Clemens, P. R. et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther.3, 965–972 (1996). CASPubMed Google Scholar
Braunwald, E. & Bristow, M. R. Congestive heart failure: fifty years of progress. Circulation102, IV-14–IV-23 (2000). ArticleCAS Google Scholar
Deng, M. C. et al. Mechanical circulatory support for advanced heart failure. Effect of patient selection or outcome. Circulation103, 231–237 (2001). ArticleCASPubMed Google Scholar
Stetson, S. J. et al. Evidence for reversible dystrophin abnormalities in patients with non-familial dilated cardiomyopathies: observations in patients treated with long-term mechanical support. Circulation102, II–132 (2000). Google Scholar
Cohn, R. D. et al. Prevention of cardiomyopathy in mouse models lacking smooth muscle sarcoglycan-sarcospan complex. J. Clin. Invest.107, R1–R7 (2001). ArticleCASPubMedPubMed Central Google Scholar
Towbin, J. A. & Bowles, N. E. Sarcoglycan, the heart, and skeletal muscles: new treatment, old drug? J. Clin. Invest.107, 154–154 (2001). Article Google Scholar