RanGAP mediates GTP hydrolysis without an arginine finger (original) (raw)
References
Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science277, 333–338 (1997). ArticleCAS Google Scholar
Rittinger, K. et al. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature389, 758–762 (1997). ArticleADSCAS Google Scholar
Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol.15, 607–660 (1999). Article Google Scholar
Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J.14, 705–715 (1995). ArticleCAS Google Scholar
Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett.419, 249–254 (1997). ArticleCAS Google Scholar
Becker, J. et al. RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae. J. Biol. Chem.270, 11860–11865 (1995). ArticleCAS Google Scholar
Hillig, R. C. et al. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Mol. Cell.3, 781–791 (1999). ArticleCAS Google Scholar
Vetter, I. R., Arndt, A., Kutay, U., Görlich, D. & Wittinghofer, A. Structural view of the Ran-Importin β interaction at 2.3 Å resolution. Cell97, 635–646 (1999). ArticleCAS Google Scholar
Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran.GppNHp. Nature399, 230–237 (1999). ArticleADSCAS Google Scholar
Haberland, J., Becker, J. & Gerke, V. The acidic C-terminal domain of rna1p is required for the binding of Ran.GTP and for RanGAP activity. J. Biol. Chem.272, 24717–24726 (1997). ArticleCAS Google Scholar
Lounsbury, K. M., Richards, S. A., Carey, K. L. & Macara, I. G. Mutations within the Ran/TC4 GTPase. Effects on regulatory factor interactions and subcellular localization. J. Biol. Chem.271, 32834–32841 (1996). ArticleCAS Google Scholar
Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature398, 39–46 (1999). ArticleADSCAS Google Scholar
Richards, S. A., Lounsbury, K. M. & Macara, I. G. The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J. Biol. Chem.270, 14405–14411 (1995). ArticleCAS Google Scholar
Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature374, 378–381 (1995). ArticleADSCAS Google Scholar
Haberland, J. & Gerke, V. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation. Biochem. J.343, 653–662 (1999). ArticleCAS Google Scholar
Nassar, N., Hoffman, G. R., Manor, D., Clardy, J. C. & Cerione, R. A. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nature Struct. Biol.5, 1047–1052 (1998). ArticleCAS Google Scholar
Tesmer, J. J., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4--activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell89, 251–261 (1997). ArticleCAS Google Scholar
Der, C. J., Finkel, T. & Cooper, G. M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell44, 167–176 (1986). ArticleCAS Google Scholar
Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry34, 639–647 (1995). ArticleCAS Google Scholar
Albert, S., Will, E. & Gallwitz, D. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J.18, 5216–5225 (1999). ArticleCAS Google Scholar
Ahmadian, M. R., Stege, P., Scheffzek, K. & Wittinghofer, A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Struct. Biol.4, 686–689 (1997). ArticleCAS Google Scholar
Graham, D. L., Eccleston, J. F. & Lowe, P. N. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminium fluoride. Biochemistry38, 985–991 (1999). ArticleCAS Google Scholar
Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell86, 445–452 (1996). ArticleCAS Google Scholar
Maegley, K. A., Admiraal, S. J. & Herschlag, D. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Proc. Natl Acad. Sci. USA93, 8160–8166 (1996). ArticleADSCAS Google Scholar
Allin, C., Ahmadian, M. R., Wittinghofer, A. & Gerwert, K. Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time. Proc. Natl Acad. Sci. USA98, 7754–7759 (2001). ArticleADSCAS Google Scholar
Prakash, B., Renault, L., Praefcke, G. J., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J.19, 4555–4564 (2000). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystrallogr. D50, 760–763 (1994). Article Google Scholar
Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol.277, 173–208 (1997). ArticleCAS Google Scholar
Brunger, A. T. et al. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar