Fossils, genes and the evolution of animal limbs (original) (raw)
Müller, G. B. & Wagner, G. P. Novelty in evolution: Restructuring the concept. Ann. Rev. Ecol. Syst.22, 229–256 (1991). Article Google Scholar
Coates, M. I. The origin of vertebrate limbs. Development (suppl.) 169–180 (1994).
Coates, M. I. Fish fins or tetrapod limbs—a simple twist of fate? Curr. Biol.5, 844–848 (1995). ArticleCASPubMed Google Scholar
Shubin, N. The evolution of paired fins and the origin of tetrapod limbs. Evol. Biol.28, 39–85 (1995). Article Google Scholar
Coates, M. I. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Trans. R. Soc. Edinb.87, 363–421 (1996). Article Google Scholar
Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development122, 1449–1466 (1996). CASPubMed Google Scholar
Tabin, C. J. & Laufer, E. Hox genes and serial homology. Nature361, 692–693 (1993). ArticleADS Google Scholar
Sordino, P., van der Hoeven, F. & Duboule, D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature375, 678–681 (1995). ArticleADSCASPubMed Google Scholar
Mackem, S., Ranson, M. & Mahon, K. Limb-type differences in expression domains of certain chick _Hox_-4 genes and relationship to pattern modification for flight. Prog. Clin. Biol. Res.383 A, 21–30 (1993). Google Scholar
Peterson, R. J., Papenbrock, T., Davada, M. M. & Awgulewitschh, A. The murine Hoxc cluster contains five neighboring _abdB_-related Hox genes that show unique spatially coordinated expression in posterior embryonic subregions. Mech. Dev.47, 253–260 (1994). ArticleCASPubMed Google Scholar
Gibson-Brown, J. J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev.56, 93–101 (1996). ArticleCASPubMed Google Scholar
Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature375, 791–795 (1995). ArticleADSCASPubMed Google Scholar
Vorobyeva, E. & Hinchliffe, J. R. From fins to limbs. Evol. Biol.29, 263–311 (1996). Google Scholar
Hinchliffe, J. R. & Johnson, D. R. The Development of the Vertebrate Limb (Clarendon, Oxford, 1980). Google Scholar
Holmgren, N. On the origin of the tetrapod limb. Acta Zoologica14, 185–295 (1933). Article Google Scholar
Holmgren, N. Contribution on the question of the origin of the tetrapod limb. Acta Zoologica20, 89–124 (1939). Article Google Scholar
Watson, D. M. S. On the primitive tetrapod limb. Anat. Anzeiger44, 24–27 (1913). Google Scholar
Gregory, W. K. & Raven, H. C. Studies on the origin and early evolution of paired fins and limbs. Ann. N. Y. Acad. Sci.42, 273–360 (1941). ArticleADS Google Scholar
Sordino, P. & Duboule, D. Amolecular approach to the evolution of vertebrate paired appendages. Trends Ecol. Evol.11, 114–119 (1996). ArticleCASPubMed Google Scholar
Ahlberg, P. E. & Milner, A. R. The origin and early diversification of tetrapods. Nature368, 507–512 (1994). ArticleADS Google Scholar
Yokouchi, Y. et al. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature353, 443–445 (1991). ArticleADSCASPubMed Google Scholar
Gerard, M., Duboule, D. & Zakany, J. C. Cooperation of regulatory elements involved in the activation of the Hoxd-11 gene. Compt. R. Acad. Sci. III316, 985–994 (1993). CAS Google Scholar
Beckers, J., Gerard, M. & Duboule, D. Transgenic analysis of a potential Hoxd-11 limb regulatory element present in tetrapods and fish. Dev. Biol.180, 543–553 (1996). ArticleCASPubMed Google Scholar
van der Hoeven, F., Zakany, J. & Duboule, D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell85, 1025–1035 (1996). ArticleCASPubMed Google Scholar
Shubin, N. & Alberch, P. Amorphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol.20, 318–390 (1986). Google Scholar
Tabin, C. J. Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. Development116, 289–296 (1992). CASPubMed Google Scholar
Holder, N. Developmental constraints and the evolution of vertebrate digit patterns. J. Theor. Biol.104, 451–471 (1983). ArticleCASPubMed Google Scholar
Morse, E. On the tarsus and carpus of birds. Ann. Lyc. Nat. Hist.10, 141–158 (1872). Article Google Scholar
Shubin, N., Crawford, A. & Wake, D. Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): Evolutionary and phylogenetic implications. Evolution49, 874–884 (1995). ArticlePubMed Google Scholar
Greer, A. Limb reduction in the Scincid lizard genus Lerista. 2. Variation in the bone complements of the front and rear limbs and the number of postsacral vertebrae. J. Herpetol.24, 142–150 (1980). Article Google Scholar
Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution32, 73–92 (1978). ArticlePubMed Google Scholar
Gauthier, J. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci.8, 1–55 (1986). Google Scholar
MacFadden, B. J. Fossil Horses (Cambridge Univ. Press, 1992). Google Scholar
Davis, A. P. & Capecchi, M. R. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development120, 2187–2198 (1994). CASPubMed Google Scholar
Davis, A. P. & Capecchi, M. R. Amutational analysis of the 5′ HoxD genes: Dissection of genetic interactions during limb development in the mouse. Development122, 1175–1185 (1996). CASPubMed Google Scholar
Favier, B. et al. Functional cooperation between the non-paralogous genes Hoxa-10 and _Hoxd0_-11 in the developing forelimb and axial skeleton. Development122, 449–460 (1996). CASPubMed Google Scholar
Dollé, P. et al. Disruption of the _Hoxd_-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell75, 431–441 (1993). ArticlePubMed Google Scholar
Favier, B., LeMeur, M., Chambon, P. & Dollé, P. Axial skeleton homeosis and forelimb malformations in _Hoxd_-11 mutant mice. Proc. Natl Acad. Sci. USA92, 310–314 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Capecchi, M. R. Function of homeobox genes in skeletal development. Ann. N. Y. Acad. Sci.97, 34–37 (1996). ArticleADS Google Scholar
Wigglesworth, V. B. Evolution of insect wings and flight. Nature246, 127–203 (1973). ArticleADS Google Scholar
Budd, G. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia29, 1–14 (1996). Article Google Scholar
Hou, X. G. & Bergström, J. Cambrian lobopodians—ancestors of extant onychophorans? Zool. J. Linn. Soc. Lond.114, 3–19 (1995). Article Google Scholar
Simonetta, A. M. & Delle Cave, L. in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Conway Morris, S.) 189–244 (Cambridge Univ. Press, 1991). Google Scholar
Budd, G. ACambrian gilled lobopod from Greenland. Nature364, 709–711 (1993). ArticleADS Google Scholar
Chen, J. Y., Ramsköld, L. & Zhou, G. Q. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science264, 1304–1308 (1994). ArticleADSCASPubMed Google Scholar
Carroll, S. B. Homeotic genes and the evolution of arthropods and chordates Nature376, 479–485 (1995). ArticleADSCASPubMed Google Scholar
Gibson, G. & Gehring, W. J. Head and thoracic transformations caused by ectopic expression of Antennapedia during Drosophila development. Development102, 657–675 (1988). Google Scholar
Stuart, J., Brown, S., Beeman, R. & Denell, R. Adeficiency of the homeotic complex of the beetle Tribolium. Nature350, 72–47 (1991). ArticleADSCASPubMed Google Scholar
Averof, M. & Akam, M. Hox genes and the diversification of insect–crustacean body plans. Nature376, 420–423 (1995). ArticleADSCASPubMed Google Scholar
Vachon, G. et al. Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene. Cell71, 437–450 (1992). ArticleCASPubMed Google Scholar
Panganiban, G. et al. The development of crustacean limbs and the evolution of arthropods. Science270, 1363–1366 (1995). ArticleADSCASPubMed Google Scholar
Manton, S. M. Mandibular Mechanisms and the Evolution of ArthropodsVol. 247 (British Museum and Queen Mary College, London, 1964). Google Scholar
Wheeler, W. C., Cartwright, P. & Hayashi, C. Y. Arthropod phylogeny: a combined approach. Cladistics9, 1–39 (1993). ArticlePubMed Google Scholar
Boore, J. L., Collins, T. M., Stanton, D., Daehler, L. L. & Brown, W. M. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature376, 163–165 (1995). ArticleADSCASPubMed Google Scholar
Cohen, S. M. & Jürgens, G. Proximal–distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development. EMBO J.8, 2045–2055 (1989). ArticleCASPubMedPubMed Central Google Scholar
Cohen, S. et al. Distal-less encodes a homeodomain protein required for limb development in Drosophila. Nature338, 432–434 (1989). ArticleADSCASPubMed Google Scholar
Panganiban, G., Nagy, L. & Carroll, S. B. The development and evolution of insect limb types. Curr. Biol.4, 671–675 (1994). ArticleCASPubMed Google Scholar
Popadic, A., Rusch, D., Peterson, M., Rogers, B. T. & Kaufman, T. C. Origin of the arthropod mandible. Nature380, 395 (1996). ArticleADSCAS Google Scholar
Jeram, A. J., Selden, P. A. & Edwards, D. Land animals in the Silurian: Arachinids and myriapods from Shropshire, England. Science250, 658–661 (1990). ArticleADSCASPubMed Google Scholar
Kukalová-Peck, J. The Insects of Australia 2nd edn (Cornell University Press, Ithaca, NY, 1991). Google Scholar
Snodgrass, R. Principles of Insect Morphology (McGraw-Hill, New York, 1935). Google Scholar
. Kukalova-Peck, J. Origin and evolution of insect wings and their relation to metamorphosis, as documented from the fossil record. J. Morphol.156, 53–126 (1978). ArticlePubMed Google Scholar
Marden, J. H. & Kramer, M. G. Surface-skimming stoneflies: A possible intermediate stage in insect flight evolution. Science266, 427–430 (1994). ArticleADSCASPubMed Google Scholar
Cohen, B. et al. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development117, 597–608 (1993). CASPubMed Google Scholar
Diaz-Benjumea, F. & Cohen, S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell75, 741–752 (1993). ArticleCASPubMed Google Scholar
Carroll, S. B. et al. Pattern formation and eyespot determination in butterfly wings. Science265, 109–114 (1994). ArticleADSCASPubMed Google Scholar
Averof, M. & Cohen, S. M. Evolutionary origin of insect wings from ancestral gills. Nature385, 627–630 (1997). ArticleADSCASPubMed Google Scholar
Lee, J. J. et al. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell71, 33–50 (1992). ArticleCASPubMed Google Scholar
Tabata, T. et al. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev.6, 2635–2645 (1992). ArticleCASPubMed Google Scholar
Basler, D. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature368, 208–214 (1994). ArticleADSCASPubMed Google Scholar
Posakony, L., Raftery, L. & Gelbart, W. Wing formation in Drosophila melanogaster requires decapentaplegic gene function along the anterior–posterior compartment boundary. Mech. Dev.33, 69–82 (1991). Article Google Scholar
Capdevila, J. & Guerrero, I. The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J.6, 715–729 (1994). Google Scholar
Sanicola, M., Sekelsky, J., Elson, S. & Gelbart, W. M. Drawing a stripe in Drosophila imaginal discs: negative regulation of decapentaplegic and patched expression. Genetics139, 745–756 (1995). CASPubMedPubMed Central Google Scholar
Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range actions of a Dpp morphogen gradient. Cell85, 357–368 (1996). ArticleCASPubMed Google Scholar
Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature381, 387–393 (1996). ArticleADSCASPubMed Google Scholar
Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell75, 1417–1430 (1993). ArticleCASPubMed Google Scholar
Krauss, S., Concordet, J. P. & Ingham, P. W. Afunctionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell75, 1431–1444 (1993). ArticleCASPubMed Google Scholar
Chang, D. T. et al. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development120, 3339–3353 (1994). CASPubMed Google Scholar
Riddle, R. D. et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell75, 1401–1416 (1995). Article Google Scholar
Irvine, K. & Weischaus, E. fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell79, 595–606 (1994). ArticleCASPubMed Google Scholar
Spreicher, S., Thomas, U., Hinz, U. & Knust, E. The Serrate locus of Drosophila and its role in morphogenesis or imaginal discs: control of cell proliferation. Development120, 535–544 (1994). Google Scholar
Kim, J., Irvine, K. & Carroll, S. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell82, 795–802 (1995). ArticleCASPubMed Google Scholar
Couso, J. P., Knust, E. & Martinez Ariias, A. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr. Biol.5, 1437–1448 (1995). ArticleCASPubMed Google Scholar
Diaz-Benjumea, F. J. & Cohen, S. Serrate signals through Notch to establish a _Wingless_-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development121, 4215–4225 (1995). CASPubMed Google Scholar
Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature382, 133–138 (1996). ArticleADSCASPubMed Google Scholar
Todt, W. L. & Fallon, J. F. Development of the apical ectodermal ridge in the chick wing bud. J. Embryol. Exp. Morphol.80, 21–41 (1984). CASPubMed Google Scholar
Rodriguez-Estaban, C. et al. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature386, 360–361 (1997). ArticleADS Google Scholar
Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature386, 366–373 (1997). ArticleADSCASPubMed Google Scholar
Williams, J. A., Paddock, S. W. & Carroll, S. B. Pattern formation in a secondary field: A hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete sub-regions. Development117, 571–584 (1993). CASPubMed Google Scholar
Couso, J. P., Bate, M. & Martinez-Ariias, A. A_wingless_-dependent polar coordinate system in Drosophila imaginal discs. Science259, 484–489 (1993). ArticleADSCASPubMed Google Scholar
Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature374, 350–353 (1995). ArticleADSCASPubMed Google Scholar
Riddle, R. D. et al. Induction of the LIM homeobox gene Lmx-1 by Wnt-7a establishes dorsoventral pattern in the vertebrate limb. Cell83, 631–640 (1995). ArticleCASPubMed Google Scholar
Vogel, A. et al. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature378, 716–720 (1995). ArticleADSCASPubMed Google Scholar
Wall, N. A. & Hogan, B. L. M. Expression of _bone morphogenetic protein_-4 (_BMP_-4), bone morphogenetic protein-7 (BMP-7), _fibroblast growth factor_-8 (_FGF_-8) and Sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev.53, 383–392 (1995). ArticleCASPubMed Google Scholar
Marigo, V., Scott, M. P., Johnson, R. L., Goodrich, L. V. & Tabin, C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development122, 1225–1233 (1996). CASPubMed Google Scholar
Roth, V. L. Homology and hierarchies: Problems solved and unresolved. J. Evol. Biol.4, 167–194 (1991). Article Google Scholar
Wagner, G. P. The origin of morphological characters and the biological basis of homology. Evolution43, 1157–1171 (1989). ArticleCASPubMed Google Scholar
Bolker, J. A. & Raff, R. A. Developmental genetics and traditional homology. BioEssays18, 489–494 (1996). ArticleCASPubMed Google Scholar
Carroll, R. L. Vertebrate Paleontology (Freeman, San Francisco, 1988). Google Scholar
Jarvik, E. The Structure and Evolution of the VertebratesVol. 1 (Academic, New York, 1980). Google Scholar
Jarvik, E. The Devonian tetrapod Ichthyostega. Fossils and Strata40, 1–213 (1996). Google Scholar
Fromental-Ramain, C. et al. Specific and redundant functions of the paralogous _Hoxa-_9 and _Hoxd-_9 genes in forelimb and axial skeleton patterning. Development122, 461–472 (1996). CASPubMed Google Scholar
Mortlock, D. P., Post, L. C. & Innis, J. W. The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation. Nature Genet.13, 284–289 (1996). ArticleCASPubMed Google Scholar
Mortlock, D. P. & Innis, J. W. Mutation of HOXA13 in hand–foot–genital syndrome. Nature Genet.15, 179–181 (1997). ArticleCASPubMed Google Scholar
Saunders, J. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool.108, 363–403 (1948). ArticlePubMed Google Scholar
Summerbell, D., Lewis, J. H. & Wolpert, L. Postional information in chick limb morphogenesis. Nature244, 492–496 (1973). ArticleADSCASPubMed Google Scholar
Lebedev, O. A. & Coates, M. I. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zool. J. Linn. Soc.113, 302–348 (1995). Google Scholar
Hou, X. G., Bergström, J. & Ahlberg, P. Anomalocaris and other large animals in the Lower Cambrian Chenjiang fauna of southwest China. Geol Forening. Forhandling.117, 163–183 (1995). Google Scholar