The Rx homeobox gene is essential for vertebrate eye development (original) (raw)

Nature volume 387, pages 603–607 (1997)Cite this article

Abstract

Development of the vertebrate eye requires a series of steps including specification of the anterior neural plate, evagination of the optic vesicles from the ventral forebrain, and the cellular differentiation of the lens and retina. Homeobox-containing genes, especially the transcription regulator Pax6, play a critical role in vertebrate and invertebrate eye formation. Mutations in Pax6 function result in eye malformations known as Aniridia in humans and Small eye syndrome in mice1,2,3. The Drosophila homologue of Pax6, eyeless, is also necessary for correct invertebrate eye development, and its misexpression leads to formation of ectopic eyes in Drosophila4,5. Here we show that a conserved vertebrate homeobox gene, Rx, is essential for normal eye development, and that its misexpression has profound effects on eye morphology. Xenopus embryos injected with synthetic Rx RNA develop ectopic retinal tissue and display hyperproliferation in the neuroretina. Mouse embryos carrying a null allele of this gene do not form optic cups and so do not develop eyes. The Rx gene family plays an important role in the establishment and/or proliferation of retinal progenitor cells.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Ton, C. C. T. et al. Positional cloning and characterization of a paired box and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074 (1991).
    Article CAS Google Scholar
  2. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet. 7, 463–471 (1994).
    Article CAS Google Scholar
  3. Hill, R. E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).
    Article CAS Google Scholar
  4. Quiring, R., Walldorf, U., Kloter, U. & Gehring, W. J. Homology of the eyeless gene of Drosophila to the Small eye in mice and Aniridia in humans. Science 265, 785–789 (1994).
    Article CAS Google Scholar
  5. Halder, C., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).
    Article CAS Google Scholar
  6. Jamrich, M. & Sato, S. Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis. Devellopment 105, 779–786 (1989).
    CAS Google Scholar
  7. Sive, H. L., Harrori, K. & Weintraub, H. Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58, 171–180 (1989).
    Article CAS Google Scholar
  8. Mathers, P. H., Miller, A., Doniach, T., Dirksen, M.-L. & Jamrich, M. Initiation of anterior head-specific gene expession in uncommitted ectoderm of Xenopus laevis by ammonium chloride. Dev. Biol. 171, 641–654 (1995).
    Article CAS Google Scholar
  9. Bopp, D., Burri, M., Baumgartner, S., Frigerio, G. & Noll, M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes in Drosophila. Cell 47, 1033–1040 (1986).
    Article CAS Google Scholar
  10. Noll, M. Evolution and role of Pax genes. Curr. Opin. Genet. Dev. 3, 595–605 (1993).
    Article CAS Google Scholar
  11. Hemmati-Brivanlou, A., de la Torre, J. R., Holt, C. & Harland, R. M. Cephalic expression and molecular characterization of Xenopus En-2. Development 111, 715–724 (1991).
    CAS PubMed Google Scholar
  12. Holt, C. E., Bertsch, T. W., Ellis, H. M. & Harris, W. A. Cellular determination in the Xenopus retina is independent of lineage and birth data. Neuron 1, 15–26 (1988).
    Article CAS Google Scholar
  13. Stiemke, M. M. & Hollyfield, J. G. Cell birthdays in Xenopus laevis retina. Differentiation 58, 189–193 (1995).
    Article CAS Google Scholar
  14. Wetts, R., Serbedzija, G. N. & Fraser, S. E. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev. Biol. 136, 154–163 (1989).
    Article Google Scholar
  15. Wetts, R. & Fraser, S. E. Multipotent precursors can give rise to all major cell types in the frog retina. Science 239, 1142–1145 (1988).
    Article CAS Google Scholar
  16. Younossi-Hartenstein, A., Tepass, U. & Hartenstein, V. Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Wilhelm Roux Arch. Dev. Biol. 203, 60–73 (1993).
    Article Google Scholar
  17. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, (1985)).
    Book Google Scholar
  18. Sakaguchi, D. A. Neurosci. Abstr. 16, 479.5 (1990).
    Google Scholar
  19. Huang, S. & Moody, S. A. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: Studies of normal and regulated clones. J. Neurosci. 13, 3193–3210 (1993).
    Article CAS Google Scholar
  20. Hogan, B. L. M. et al. Small eye(Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110 (1986).
    CAS PubMed Google Scholar
  21. Grindley, J. C., Davidson, D. R. & Hill, R. E. The role of Pax-6 in eye and nasal development. Development 121, 1433–1442 (1995).
    CAS PubMed Google Scholar
  22. Richter, K., Grunz, H. & Dawid, I. B. Gene expression in the embryonic nervous system of Xenopus laevis. Proc. Natl Acad. Sci. USA 85, 8086–8090 (.1988).
    Article CAS Google Scholar
  23. Nieuwkoop, P. D. & Faber, J. Normal table of Xenopus laevis (Daudin), 2nd edn (North-Holland, Amsterdam, (1967)).
    Google Scholar
  24. Harland, R. M. In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).
    Article CAS Google Scholar
  25. Conlon, R. A. & Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox2 genes in vivo. Development 116, 357–368 (1992).
    CAS PubMed Google Scholar

Download references

Acknowledgements

We thank M.-L. Dirksen, K. T. Ault, N. Papalopulu, M. Whiteley, J. Kassis, F. D. Porter, D. Feltner, D. Sakaguchi, S. Witta, M. Moos, I. Dawid, S. Moody, T. Sargent, G. Spirou, A. Berrebi and O.Sundin for materials and advice.

Author information

Author notes

  1. K. A. Mahon
    Present address: Department of Cell Biology, Baylor College of Medicine, Houston, 77030, Texas, USA
  2. P. H. Mathers
    Present address: Departments of Otolaryngology and Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, 26506, USA

Authors and Affiliations

  1. Laboratory of Developmental Biology, Food and Drug Administration, Rockville, 20852, Maryland, USA
    P. H. Mathers & M. Jamrich
  2. Laboratory of Mammalian Genes and Development, NICHD, NIH, Bethesda, 20892, Maryland, USA
    A. Grinberg

Authors

  1. P. H. Mathers
    You can also search for this author inPubMed Google Scholar
  2. A. Grinberg
    You can also search for this author inPubMed Google Scholar
  3. K. A. Mahon
    You can also search for this author inPubMed Google Scholar
  4. M. Jamrich
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toM. Jamrich.

Rights and permissions

About this article

Cite this article

Mathers, P., Grinberg, A., Mahon, K. et al. The Rx homeobox gene is essential for vertebrate eye development.Nature 387, 603–607 (1997). https://doi.org/10.1038/42475

Download citation

This article is cited by