Mitochondrial DNA repairs double-strand breaks in yeast chromosomes (original) (raw)

References

  1. Margulis,L. in Origin of Eukaryotic Cells (Yale University Press, New Haven and London, 1970).
    Google Scholar
  2. Perna,N. T. & Kocher,T. D. Molecular fossils in the nucleus. Curr. Biol. 6, 128–129 (1996).
    Article CAS Google Scholar
  3. Thorsness,P. E. & Weber,E. R. Escape and migration of nucleic acids between chloroplast, mitochondria, and the nucleus. Int. Rev. Cytol. 165, 207–231 (1996).
    Article CAS Google Scholar
  4. Foury,F., Roganti,T., Lecrenier,N. & Purnelle,B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331 (1998).
    Article CAS Google Scholar
  5. Resnick,M. A. & Martin,P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143, 119– 129 (1976).
    Article CAS Google Scholar
  6. Kramer,K. M., Brock,J. A., Bloom,K., Moor,J. K. & Haber,J. E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293– 1301 (1994).
    Article CAS Google Scholar
  7. Fairhead,C., Llorente,B., Denis,F., Soler,M. & Dujon,B. New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast 12, 1439–1457 (1996).
    Article CAS Google Scholar
  8. Teng,S.-C., Kim,B. & Gabriel,A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644 (1996).
    Article ADS Google Scholar
  9. Moore,K. J. & Haber,J. E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383, 644–646 (1996).
    Article ADS Google Scholar
  10. Fairhead,C., Thierry,A., Denis,F., Eck,M. & Dujon,B. ‘Mass-murder’ of ORFs from three regions of chromosome XI from Saccharomyces cerevisiae. Gene 223, 33–46 (1998).
    Article CAS Google Scholar
  11. Fairhead,C. & Dujon,B. Consequence of double-stranded breaks in yeast chromosomes: death or homozygosis. Mol. Gen. Genet. 240, 170–180 (1993).
    Article CAS Google Scholar
  12. de Zamaroczy,M. & Bernardi,G. The primary structure of the mitochondrial genome of _Saccharomyces cerevisiae_—a review. Gene 47, 155–157 (1986).
    Article CAS Google Scholar
  13. Roth,D. B. & Wilson,J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295– 4304 (1986).
    Article CAS Google Scholar
  14. Roth,D. & Wilson,J. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 621–653 (American Society for Microbiology, Washington DC, 1988).
    Google Scholar
  15. Gorbunova,V. & Levy,A. A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25, 4650–4657 (1997).
    Article CAS Google Scholar
  16. Sargent,R. G., Brenneman,M. A. & Wilson, J. M. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).
    Article CAS Google Scholar
  17. Schiestl,R. H., Domiska,M. & Petes,T. D. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial sequences. Mol. Cell. Biol. 13, 2697– 2705 (1993).
    Article CAS Google Scholar
  18. Thorsness,P. E. & Fox,T. D. Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346, 376–379 ( 1990).
    Article ADS CAS Google Scholar
  19. Thorsness,P. E. & Fox,T. D. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134, 21– 28 (1993).
    CAS PubMed PubMed Central Google Scholar
  20. Byers,B. in The Molecular Biology of the Yeast Saccharomyces cerevisiae (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 59– 96 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1981).
    Google Scholar
  21. Farrelly,F. & Butow,R. Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301, 296– 301 (1983).
    Article ADS CAS Google Scholar
  22. Louis,E. J. & Haber,J. E. Evolutionarily recent transfer of a group I mitochondrial intron to telomere regions in Saccharomyces cerevisiae . Curr. Genet. 20, 411– 415 (1991).
    Article CAS Google Scholar
  23. Blanchard,J. L. & Schmidt,G. W. Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol. Biol. Evol. 13, 537– 548 (1996).
    Article CAS Google Scholar
  24. Churcher,C. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome IX. Nature 387, (Suppl) 84– 87 (1997).
    CAS PubMed Google Scholar
  25. Feuermann,M., De Montigny,J., Potier,S. & Souciet,J.-L. The characterization of two new clusters of duplicated genes suggests a ‘lego’ organization of the yeast Saccharomyces cerevisiae chromosomes. Yeast 13, 861–869 ( 1997).
    Article CAS Google Scholar
  26. Goffeau,A. et al. Life with 6000 genes. Science 274, 546–567 (1996).
    Article ADS CAS Google Scholar
  27. Baudat,F. & Nicolas,A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl Acad. Sci. USA 94, 5213–5218 (1997).
    Article ADS CAS Google Scholar
  28. Wolfe,K. M. & Shields,D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).
    Article ADS CAS Google Scholar
  29. Wach,A., Brachat,A., Pohlmann,R. & Philippsen,P. New heterologous modules for classical or PCR based gene-disruptions in Saccharomyces cerevisiae . Yeast 10, 1793–1808 (1994).
    Article CAS Google Scholar
  30. Hauswirth,W. W., Lim,L. O., Dujon,B. & Turner,G. in Mitochondria. A Practical Approach (eds Darley-Usmar, V. M., Rickwood, D. & Wilson, M. T.) 171–242 (IRL Press, Oxford, 1987).
    Google Scholar

Download references