‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression (original) (raw)
Le Douarin, N. A biological cell labeling technique and its used in experimental embryology. Dev. Biol.30, 217–222 (1973). ArticleCASPubMed Google Scholar
Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development114, 1–15 (1992). CASPubMed Google Scholar
Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The triple origin of skull in higher vertebrates — a study in quail-chick chimeras. Development117, 409–429 (1993). CASPubMed Google Scholar
Bronner-Fraser, M. & Fraser, S. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature335, 161–164 (1988). ArticleCASPubMed Google Scholar
Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature344, 431–435 (1990). ArticleCASPubMed Google Scholar
Krull, C. E., Collazo, A., Fraser, S. E. & Bronner-Fraser, M. Segmental migration of trunk neural crest: time lapse analysis reveals a role for PNA-binding molecules. Development121, 3733–3743 (1995). CASPubMed Google Scholar
Kulesa, P. Neural crest cell dynamics revealed by time-lapse video microscopy of whole chick explant cultures. Dev. Biol.204, 327–344 (1998). ArticleCASPubMed Google Scholar
Petropoulos, C. & Hughes, S. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol.65, 3728– 3737 (1991). CASPubMedPubMed Central Google Scholar
Petropoulos, C., Payne, W., Salter, D. & Hughes, S. Using avian retroviral vectors for gene transfer. J. Virol.66, 3391–3397 (1992). CASPubMedPubMed Central Google Scholar
Shillito, R., Saul, M., Paszkowski, J., Muller, M. & Potrykus, I. High efficiency direct gene transfer to plants. Bio/Technol.3, 1099–1103 (1985). Google Scholar
Andreason, G. & Evans, G. Induction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques6, 650–660 (1988). CASPubMed Google Scholar
Takahashi, M. et al. Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse. Leukemia Res.15, 507–513 (1991). ArticleCAS Google Scholar
Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J.-i. Comparison of three non-viral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Comum.230, 376–380 (1997). ArticleCAS Google Scholar
Nishi, T. et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res.56, 1050–1055 (1996). CASPubMed Google Scholar
Momose, T. et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ.41, 335–344 (1999). ArticleCASPubMed Google Scholar
Suemori, H. et al. A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous β-galactosidase expression. Cell Differ. Dev.29, 181–186 (1990). ArticleCASPubMed Google Scholar
Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron21, 39–51 (1998). ArticleCASPubMed Google Scholar
Funahashi, J.-i. et al. Role of Pax5 in the regulation of a mid-hindbrain organizer’s activity. Dev. Growth Differ.41, 59– 72 (1999). ArticleCASPubMed Google Scholar
Akamatsu, W. et al. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc. Natl Acad. Sci. USA96, 9885–9890 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ogino, H. & Yasuda, K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science280, 115–118 (1998). ArticleCASPubMed Google Scholar
Takeuchi, J. K. et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature398, 810– 814 (1999). ArticleCASPubMed Google Scholar
Manzanares, M. et al. Conserved and distinct roles of kreisler in regulation of paralogous Hoxa3 and Hoxb3 genes. Development126, 759–769 (1999). CASPubMed Google Scholar
Morrison, A. et al. Comparative analysis of Hoxb-4 regulation in transgenic mice. Mech. Dev.53, 47– 59 (1995). ArticleCASPubMed Google Scholar
Morrison, A., Ariza-McNaughton, L., Gould, A., Featherstone, M. & Krumlauf, R. HOXD4 and regulation of the group 4 paralog genes. Development124, 3135–3146 (1997). CASPubMed Google Scholar
Whiting, J. et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev.5, 2048–2059 (1991). ArticleCASPubMed Google Scholar
Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish Fugu rubripes. Proc. Natl Acad. Sci. USA92, 1684–1688 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pöpperl, H. . et al. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell81, 1031–1042 (1995). ArticlePubMed Google Scholar
Studer, M., Pöpperl, H., Marshall, H., Kuroiwa, A. & Krumlauf, R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science265, 1728–1732 (1994). ArticleCASPubMed Google Scholar
Aihara, H. & Miyazaki, J.-i. Gene transfer into muscle by electroporation in vivo. Nature Biotech.16, 867–870 (1998). ArticleCAS Google Scholar
Rols, M.-P. et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nature Biotech.16, 168–171 (1998). ArticleCAS Google Scholar
Sundin, O. & Eichele, G. A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev.4, 1267–1276 (1990). ArticleCASPubMed Google Scholar
Maden, M. et al. Retinoic acid-binding protein and homeobox expression in rhombomeres of the chick embryo. Development111, 35–44 (1991). CASPubMed Google Scholar