CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans (original) (raw)

References

  1. Pines, J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308, 697–711 (1995).
    Article CAS Google Scholar
  2. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  3. Peters, J.-M. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10, 759–768 (1998).
    Article CAS Google Scholar
  4. Michael, W. M. & Newport, J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282, 1886–1889 (1998).
    Article CAS Google Scholar
  5. Kaiser, P., Sia, R. A. L., Bardes, E. G. S., Lew, D. J. & Reed, S. I. Cdc34 and the F-box protein Met30 are required for degradation of the cdk-inhibitory kinase Swe1. Genes Dev. 12, 2587–2597 (1998).
    Article CAS Google Scholar
  6. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994).
    Article CAS Google Scholar
  7. Feldman, R. M. R., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).
    Article CAS Google Scholar
  8. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-Box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).
    Article CAS Google Scholar
  9. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657– 661 (1999).
    Article CAS Google Scholar
  10. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284, 662–665 (1999).
    Article CAS Google Scholar
  11. Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).
    Article CAS Google Scholar
  12. Tan, P. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IkBα. Mol. Cell 3, 527–533 (1999).
    Article CAS Google Scholar
  13. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).
    Article CAS Google Scholar
  14. Deshaies, R. J., Chau, V. & Kirschner, M. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14, 303– 312 (1995).
    Article CAS Google Scholar
  15. Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453–463 (1996).
    Article CAS Google Scholar
  16. Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11, 3046–3060 (1997).
    Article CAS Google Scholar
  17. Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85, 829–839 (1996).
    Article CAS Google Scholar
  18. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2155– 2161 (1997).
    Article Google Scholar
  19. Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing Elongins B/C and Cul2. Mol. Cell Biol. 18, 732– 741 (1998).
    Article CAS Google Scholar
  20. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999).
    Article CAS Google Scholar
  21. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).
    Article CAS Google Scholar
  22. Kaelin, W. G. & Maher, E. R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423– 426 (1998).
    Article CAS Google Scholar
  23. Hedgecock, E. M. & White, J. G. Polyploid tissues in the nematode Caenorhabditis elegans. Dev. Biol. 107, 128–133 (1985).
    Article CAS Google Scholar
  24. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS Google Scholar
  25. Hong, G., Roy, R. & Ambros, V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in C. elegans. Development 125, 3585–3597 (1998).
    CAS PubMed Google Scholar
  26. Mains, P. E., Kemphues, K. J., Sprunger, S. A., Sulston, I. A. & Wood, W. B. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126, 593–605 (1990).
    CAS PubMed PubMed Central Google Scholar
  27. Edgar, L. G. & McGhee, J. D. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53, 589–599 (1988).
    Article CAS Google Scholar
  28. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).
    Article CAS Google Scholar
  29. Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).
    Article CAS Google Scholar
  30. Koshland, D. & Strunnikov, A. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol. 12, 305– 333 (1996).
    Article CAS Google Scholar
  31. Boxem, M., Srinivasan, D. G. & van den Heuvel, S. The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 126, 2227–2239 (1999).
    CAS Google Scholar
  32. Stebbins, C. E., Kaelin, W. G. & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).
    Article CAS Google Scholar
  33. Kamura, T. et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872– 3881 (1998).
    Article CAS Google Scholar
  34. Zhang, J.-G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl Acad. Sci. USA 96, 2071– 2076 (1999).
    Article CAS Google Scholar
  35. Pause, A., Lee, S., Lonergan, K. M. & Klausner, R. D. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawl. Proc. Natl Acad. Sci. USA 95, 993– 998 (1998).
    Article CAS Google Scholar
  36. Kim, M. et al. Recombinant adenovirus expressing Von Hippel-Lindau-mediated cell cycle arrest is associated with the induction of cyclin-dependent kinase inhibitor p27Kip1. Biochem. Biophys. Res. Comm. 253, 672–677 (1998).
    Article CAS Google Scholar
  37. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).
    Article CAS Google Scholar
  38. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).
    Article CAS Google Scholar
  39. Tsvetkov, L. M., Yeh, K.-H., Lee, S.-J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).
    Article CAS Google Scholar
  40. Yu, Z.-K., Gervais, J. L. M. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).
    Article CAS Google Scholar
  41. Kirby, C., Kusch, M. & Kemphues, K. Mutation in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev. Biol. 142, 203–215 (1990).
    Article CAS Google Scholar
  42. Plasterk, R. H. A. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 59–80 (Academic, San Diego, 1995).
    Book Google Scholar
  43. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).
  44. Krause, M. & Hirsh, D. A trans-spliced leader on actin mRNA in C. elegans. Cell 49, 753– 761 (1987).
    Article CAS Google Scholar
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar
  46. Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony Version 3.1. (Illinois Nat. Hist. Survey, Champaign, IL, 1993).
  47. Harlow, E. & Lane, D. Antibodies (A Laboratory Manual) (Cold Spring Harb. Lab., Cold Spring Harb., NY, 1988).
    Google Scholar
  48. Miller, D. M. & Shakes, D. C. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 365–394 (Academic, San Diego, 1995).
    Book Google Scholar
  49. Schumacher, J. M., Ashcroft, N., Donovan, P. J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125, 4391–4402 (1998).
    CAS Google Scholar
  50. Seydoux, G. & Fire, A. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 323–339 (Academic, San Diego, 1995).
    Book Google Scholar
  51. Johnson, C. at 11th International C. elegans meeting May 28–June 1, 1997 (Univ. Wisconsin, Madison, WI, USA).

Download references