CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans (original) (raw)
References
Pines, J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J.308, 697–711 (1995). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Peters, J.-M. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol.10, 759–768 (1998). ArticleCAS Google Scholar
Michael, W. M. & Newport, J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science282, 1886–1889 (1998). ArticleCAS Google Scholar
Kaiser, P., Sia, R. A. L., Bardes, E. G. S., Lew, D. J. & Reed, S. I. Cdc34 and the F-box protein Met30 are required for degradation of the cdk-inhibitory kinase Swe1. Genes Dev.12, 2587–2597 (1998). ArticleCAS Google Scholar
Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell79, 233–244 (1994). ArticleCAS Google Scholar
Feldman, R. M. R., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell91, 221–230 (1997). ArticleCAS Google Scholar
Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-Box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell91, 209–219 (1997). ArticleCAS Google Scholar
Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science284, 657– 661 (1999). ArticleCAS Google Scholar
Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science284, 662–665 (1999). ArticleCAS Google Scholar
Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell3, 535–541 (1999). ArticleCAS Google Scholar
Tan, P. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IkBα. Mol. Cell3, 527–533 (1999). ArticleCAS Google Scholar
Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell86, 263–274 (1996). ArticleCAS Google Scholar
Deshaies, R. J., Chau, V. & Kirschner, M. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J.14, 303– 312 (1995). ArticleCAS Google Scholar
Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell86, 453–463 (1996). ArticleCAS Google Scholar
Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev.11, 3046–3060 (1997). ArticleCAS Google Scholar
Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell85, 829–839 (1996). ArticleCAS Google Scholar
Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA94, 2155– 2161 (1997). Article Google Scholar
Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing Elongins B/C and Cul2. Mol. Cell Biol.18, 732– 741 (1998). ArticleCAS Google Scholar
Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev.13, 1822–1833 (1999). ArticleCAS Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCAS Google Scholar
Kaelin, W. G. & Maher, E. R. The VHL tumour-suppressor gene paradigm. Trends Genet.14, 423– 426 (1998). ArticleCAS Google Scholar
Hedgecock, E. M. & White, J. G. Polyploid tissues in the nematode Caenorhabditis elegans. Dev. Biol.107, 128–133 (1985). ArticleCAS Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCAS Google Scholar
Hong, G., Roy, R. & Ambros, V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in C. elegans. Development125, 3585–3597 (1998). CASPubMed Google Scholar
Mains, P. E., Kemphues, K. J., Sprunger, S. A., Sulston, I. A. & Wood, W. B. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics126, 593–605 (1990). CASPubMedPubMed Central Google Scholar
Edgar, L. G. & McGhee, J. D. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell53, 589–599 (1988). ArticleCAS Google Scholar
Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma106, 348–360 (1997). ArticleCAS Google Scholar
Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell97, 99–109 (1999). ArticleCAS Google Scholar
Koshland, D. & Strunnikov, A. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol.12, 305– 333 (1996). ArticleCAS Google Scholar
Boxem, M., Srinivasan, D. G. & van den Heuvel, S. The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development126, 2227–2239 (1999). CAS Google Scholar
Stebbins, C. E., Kaelin, W. G. & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science284, 455–461 (1999). ArticleCAS Google Scholar
Kamura, T. et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev.12, 3872– 3881 (1998). ArticleCAS Google Scholar
Zhang, J.-G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl Acad. Sci. USA96, 2071– 2076 (1999). ArticleCAS Google Scholar
Pause, A., Lee, S., Lonergan, K. M. & Klausner, R. D. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawl. Proc. Natl Acad. Sci. USA95, 993– 998 (1998). ArticleCAS Google Scholar
Kim, M. et al. Recombinant adenovirus expressing Von Hippel-Lindau-mediated cell cycle arrest is associated with the induction of cyclin-dependent kinase inhibitor p27Kip1. Biochem. Biophys. Res. Comm.253, 672–677 (1998). ArticleCAS Google Scholar
Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 (1999). ArticleCAS Google Scholar
Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol.1, 207–214 (1999). ArticleCAS Google Scholar
Tsvetkov, L. M., Yeh, K.-H., Lee, S.-J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol.9, 661–664 (1999). ArticleCAS Google Scholar
Yu, Z.-K., Gervais, J. L. M. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA95, 11324–11329 (1998). ArticleCAS Google Scholar
Kirby, C., Kusch, M. & Kemphues, K. Mutation in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev. Biol.142, 203–215 (1990). ArticleCAS Google Scholar
Plasterk, R. H. A. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 59–80 (Academic, San Diego, 1995). Book Google Scholar
The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018 (1998).
Krause, M. & Hirsh, D. A trans-spliced leader on actin mRNA in C. elegans. Cell49, 753– 761 (1987). ArticleCAS Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). ArticleCAS Google Scholar
Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony Version 3.1. (Illinois Nat. Hist. Survey, Champaign, IL, 1993).
Harlow, E. & Lane, D. Antibodies (A Laboratory Manual) (Cold Spring Harb. Lab., Cold Spring Harb., NY, 1988). Google Scholar
Miller, D. M. & Shakes, D. C. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 365–394 (Academic, San Diego, 1995). Book Google Scholar
Schumacher, J. M., Ashcroft, N., Donovan, P. J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development125, 4391–4402 (1998). CAS Google Scholar
Seydoux, G. & Fire, A. in Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 323–339 (Academic, San Diego, 1995). Book Google Scholar
Johnson, C. at 11th International C. elegans meeting May 28–June 1, 1997 (Univ. Wisconsin, Madison, WI, USA).