Cooperative symmetry-breaking by actin polymerization in a model for cell motility (original) (raw)

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).
    Article CAS Google Scholar
  2. Bornens, M. Cell polarity: intrinsic or externally imposed? New Biol. 3, 627–636 (1991).
    CAS PubMed Google Scholar
  3. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44– 49 (1990).
    Article CAS Google Scholar
  4. Sheterline, P., Clayton, J. & Sparrow, J. Actin. Protein Profile 2, 1–103 (1995).
    CAS PubMed Google Scholar
  5. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. Biophys J. 71, 3030–3045 (1996).
    Article CAS Google Scholar
  6. Miyata, H., Nishiyama, S., Akashi, K. & Kinosita, K. Jr Protrusive growth from giant liposomes driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 2048– 2053 (1999).
    Article CAS Google Scholar
  7. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).
    Article CAS Google Scholar
  8. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).
    Article CAS Google Scholar
  9. Nabi, I. R. The polarization of the motile cell. J. Cell Sci. 112, 1803–1811 (1999).
    CAS PubMed Google Scholar
  10. Oliver, T., Lee, J. & Jacobson, K. Forces exerted by locomoting cells. Semin. Cell Biol 5, 139–147 (1994).
    Article CAS Google Scholar
  11. Elson, E. L., Felder, S. F., Jay, P. Y., Kolodney, M. S. & Pasternak, C. Forces in cell locomotion. Biochem. Soc. Symp. 65, 299–314 (1999).
    CAS PubMed Google Scholar
  12. Dramsi, S. & Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166 (1998).
    Article CAS Google Scholar
  13. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).
    Article CAS Google Scholar
  14. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).
    Article CAS Google Scholar
  15. Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA 87, 6068–6072 (1990).
    Article CAS Google Scholar
  16. Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immun. 60, 3609– 3619 (1992).
    CAS PubMed PubMed Central Google Scholar
  17. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).
    Article CAS Google Scholar
  18. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105– 108 (1998).
    Article CAS Google Scholar
  19. Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647– 660 (1996).
    Article CAS Google Scholar
  20. Kocks, C., Hellio, R., Gounon, P., Ohayon, H. & Cossart, P. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci. 105, 699–710 (1993).
    CAS PubMed Google Scholar
  21. Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. & Mitchison, T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76, 505– 517 (1994).
    Article CAS Google Scholar
  22. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908– 4913 (1999).
    Article CAS Google Scholar
  23. Dold, F. G., Sanger, J. M. & Sanger, J. W. Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil. Cytoskeleton 28, 97–107 (1994).
    Article CAS Google Scholar
  24. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747– 2754 (1986).
    Article CAS Google Scholar
  25. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly- disassembly. Int. Rev. Cytol. 78, 1–125 (1982).
    Article CAS Google Scholar
  26. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).
    Article CAS Google Scholar
  27. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).
    Article CAS Google Scholar
  28. Coates, T. D., Watts, R. G., Hartman, R. & Howard, T. H. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol. 117, 765–774 (1992).
    Article CAS Google Scholar
  29. Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984).
    Article CAS Google Scholar
  30. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).
    Article CAS Google Scholar
  31. Gerhart, J. et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107, 37–51 (1989).
    Google Scholar
  32. Theriot, J. A. & Fung, D. C. Listeria monocytogenes-based assays for actin assembly factors. Methods Enzymol. 298, 114–122 (1998).
    Article CAS Google Scholar
  33. Doi, M. & Edwards, S. The Theory of Polymer Dynamics (Oxford Univ. Press, New York, 1986).
    Google Scholar
  34. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58– 60 (1984).
    Article CAS Google Scholar
  35. Ott, A., Magnasco, M., Simon, A. & Libchaber, A. Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys. Rev. E 48, R1642– R1645 (1993).
    Article CAS Google Scholar
  36. Riveline, D., Wiggins, C. H., Goldstein, R. E. & Ott, A. Elastohydrodynamic study of acitn filaments using fluorescence microscopy. Phys. Rev. E 56, R1330– R1333 (1997).
    Article CAS Google Scholar
  37. Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343 (1995).
    Article CAS Google Scholar
  38. Laine, R. O. et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect. Immun. 66, 3775–3782 (1998).
    CAS PubMed PubMed Central Google Scholar

Download references