TIN2, a new regulator of telomere length in human cells (original) (raw)

References

  1. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).
    Article CAS PubMed Google Scholar
  2. Aparicio, O.M., Billington, B.L. & Gottschling, D.E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1995).
    Article Google Scholar
  3. Brachmann, C.B. et al. The SIR2 gene family, conserved from bacteria to humans, function in silencing, cell cycle progression and chromosome stability. Genes Dev. 9, 2888–2902 (1995).
    Article CAS PubMed Google Scholar
  4. Marchand, S., Buck, S.W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by RAP1 protein. Genes Dev. 10, 1297–1309 (1996).
    Article Google Scholar
  5. Campisi, J. The biology of replicative senescence. Eur. J. Cancer 33, 703–709 (1997).
    Article CAS PubMed Google Scholar
  6. Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996).
    Article CAS PubMed Google Scholar
  7. Lingner, J. & Cech, T.R. Telomerase and chromosome end maintenance. Curr. Opin. Genet. Dev. 8, 226– 232 (1998).
    Article CAS PubMed Google Scholar
  8. Nugent, C.I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).
    Article CAS PubMed Google Scholar
  9. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460 (1990).
    Article CAS PubMed Google Scholar
  10. Shay, J.W. & Wright, W.E. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1071, 1–7 (1991).
    Article Google Scholar
  11. Campisi, J., Dimri, G.P. & Hara, E. Control of replicative senescence. in Handbook of the Biology of Aging (eds Schneider, E. & Rowe, J.) 121 –149 (Academic, New York, 1996).
    Google Scholar
  12. Bodnar, A.G. et al. Extension of life span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).
    Article CAS PubMed Google Scholar
  13. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279– 282 (1998).
    Article CAS PubMed Google Scholar
  14. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).
    Article CAS PubMed Google Scholar
  15. Bodnar, A.G., Kim, N.W., Effros, R.B. & Chiu, C.P. Mechanism of telomerase induction during T cell activation. Exp. Cell Res. 228, 58–64 (1996).
    Article CAS PubMed Google Scholar
  16. Buchkovich, K.J. & Greider, C.W. Telomerase regulation during entry into the cell cycle in normal human T cells. Mol. Biol. Cell 7, 1443–1454 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  17. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).
    Article CAS PubMed Google Scholar
  18. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A. & Reddel, R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).
    Article CAS PubMed Google Scholar
  19. Shore, D. Telomerase and telomere-binding proteins: controlling the end game. Trends Biochem. Sci. 22, 233–235 (1997).
    Article CAS PubMed Google Scholar
  20. Conrad, M.N., Wright, J.H., Wolf, A.J. & Zakian, V.A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).
    Article CAS PubMed Google Scholar
  21. Kyrion, G., Boakye, K.A. & Lustig, A.J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159– 5173 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  22. Wotton, D. & Shore, D. A novel RAP1p-interacting factor, RIF2p, cooperates with RIF1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748– 760 (1997).
    Article CAS PubMed Google Scholar
  23. Cockell, M. et al. The carboxy termini of SIR4 and RAP1 affect SIR3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129, 909– 924 (1995).
    Article CAS PubMed Google Scholar
  24. Grandin, N., Reed, S.I. & Charbonneau, M. STN1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with CDC13. Genes Dev. 11, 512–527 (1997).
    Article CAS PubMed Google Scholar
  25. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. CDC13p: a single-strand telomeric DNA binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).
    Article CAS PubMed Google Scholar
  26. Chong, L. et al. A human telomeric protein. Science 270 , 1663–1667 (1995).
    Article CAS PubMed Google Scholar
  27. Shen, M., Haggblom, C., Vogt, M., Hunter, T. & Lu, K.P. Characterization and cell cycle regulation of the related telomeric proteins PIN2 and TRF1 suggest a role in mitosis. Proc. Natl Acad. Sci. USA 94, 13618–13623 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  28. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).
    Article CAS PubMed Google Scholar
  29. Griffith, J., Bianchi, A. & de Lange, T. TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol. 278, 79– 88 (1998).
    Article CAS PubMed Google Scholar
  30. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end to end fusions. Cell 92, 401–413 (1998).
    Article CAS PubMed Google Scholar
  31. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).
    Article CAS PubMed Google Scholar
  32. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly (ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).
    Article CAS PubMed Google Scholar
  33. Chien, C.T., Bartel, P.L., Sternglanz, R. & Fields, S. The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci USA 88, 9578–9582 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  34. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17, 498–502 (1997).
    Article CAS PubMed Google Scholar
  35. Counter C.M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  36. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).
    Article CAS PubMed Google Scholar
  37. Dimri, G.P., Testori, A., Acosta, M. & Campisi, J. Replicative senescence, aging and growth regulatory transcription factors. Biol. Signals 5, 154–162 (1996).
    Article CAS PubMed Google Scholar
  38. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144 , 1425–1436 (1996).
    CAS PubMed PubMed Central Google Scholar
  39. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–988 (1989).
    CAS PubMed PubMed Central Google Scholar
  40. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  41. Dimri, G.P., Hara, E. & Campisi, J. Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J. Biol. Chem. 269, 16180–16186 (1994).
    CAS PubMed Google Scholar
  42. Dimri G.P. et al. (1995). A novel biomarker identifies senescent human cells in culture and aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
  43. Briand, P., Petersen, O.W. & van Deurs, B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in a chemically defined medium. In Vitro Cell Dev. Biol. 23, 181–188 (1987).
    Article CAS PubMed Google Scholar
  44. Finer, M.H., Dull, T.J., Qin, L., Farson, D. & Roberts, M.R. kat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood 83, 43–50 (1994).
    CAS PubMed Google Scholar
  45. Sambrook, J., Fritch, E.F. & Maniatis, T. Molecular Cloning (Cold Spring Harbor Press, New York, 1989).
    Google Scholar
  46. Compton, D.A., Yen, T.J. & Cleveland, D.W. Identification of a novel centromere/kinetochore-associated protein using monoclonal antibodies generated against human mitotic chromosome scaffolds. J. Cell Biol. 112, 1083– 1097 (1991).
    Article CAS PubMed Google Scholar
  47. Zhong, Z., Shiue, L., Kaplan, S. & de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 12, 4834–4843 (1992).
    Article CAS PubMed PubMed Central Google Scholar

Download references