Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation (original) (raw)

References

  1. Hollmann, M. & Heinemann, S. F. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31– 108 (1994).
    Article CAS Google Scholar
  2. McBain, C. J. & Mayer, M. L. _N-_Methyl-d-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760 (1994).
    Article CAS Google Scholar
  3. Choi, D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634 ( 1988).
    Article CAS Google Scholar
  4. Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387 (1990).
    Article CAS Google Scholar
  5. Dingledine, R., McBain, C. J. & McNamara, J. O. Excitatory amino acid receptors in epilepsy. Trends Pharmacol. Sci. 11, 334–338 (1990).
    Article CAS Google Scholar
  6. Lipton, S. A. & Rosenberg, P. A. Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622 (1994).
    Article CAS Google Scholar
  7. Manzoni, O. et al. Nitric oxide-induced blockade of NMDA receptors. Neuron 8, 653–662 ( 1992).
    Article CAS Google Scholar
  8. Lei, S. Z. et al. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8, 1087–1099 (1992).
    Article CAS Google Scholar
  9. Hoyt, K. R., Tang, L.-H., Aizenman, E. & Reynolds, I. J. Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res. 592, 310–316 (1992).
    Article CAS Google Scholar
  10. Lipton, S. A. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–632 (1993).
    Article CAS Google Scholar
  11. Manzoni, O. & Bockaert, J. Nitric oxide synthase activity endogenously modulates NMDA receptors. J. Neurochem. 61, 368–370 (1993).
    Article CAS Google Scholar
  12. Fagni, L., Olivier, M., Lafon-Cazal, M. & Bockaert, J. Involvement of divalent ions in the nitric oxide-induced blockade of N- methyl-D-aspartate receptors in cerebellar granule cells. Mol. Pharmacol. 47, 1239–1247 (1995).
    CAS PubMed Google Scholar
  13. Omerovic, A., Chen, S.-J., Leonard, J. P. & Kelso, S. R. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes. J. Recept. Signal Transduct. Res. 15, 811–827 (1995).
    Article CAS Google Scholar
  14. Sucher, N. J., Awobuluyi, M., Choi, Y.-B. & Lipton, S. A. NMDA receptors: from genes to channels. Trends Pharmacol. Sci. 17, 348–355 ( 1996).
    Article CAS Google Scholar
  15. Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO signals: Translocation, regulation, and a consensus motif. Neuron 18, 691–696 ( 1997).
    Article CAS Google Scholar
  16. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagaon, P. J. & Cohen, R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368, 850–853 ( 1994).
    Article CAS Google Scholar
  17. Kurenny, D. E., Moroz, L. L., Turner, R. W., Sharkey, K. A. & Barnes, S. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13, 315–324 (1994).
    Article CAS Google Scholar
  18. Gaston, B. et al. Relaxation of human bronchial smooth muscle by _S-_nitrosothiols in vitro. J. Pharmacol. Exp. Ther. 268, 978–984 (1994).
    CAS PubMed Google Scholar
  19. Koivisto, A. & Nedergaard, J. Modulation of calcium-activated non-selective cation channel activity by nitric oxide in rat brown adipose tissue. J. Physiol. (Lond.) 486, 59– 65 (1995).
    Article CAS Google Scholar
  20. Koh, S. D., Campbell, J. D., Carl, A. & Sanders, K. M. Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J. Physiol. (Lond.) 489, 735– 743 (1995).
    Article CAS Google Scholar
  21. Campbell, D. L., Stamler, J. S. & Strauss, H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. J. Gen. Physiol. 108, 277–293 (1996).
    Article CAS Google Scholar
  22. Broillet, M.-C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modulation of sulfhydryl groups by NO compounds. Neuron 16, 377– 385 (1996).
    Article CAS Google Scholar
  23. Takeuchi, T., Kishi, M., Ishii, T., Nishio, H. & Hata, F. Nitric oxide-mediated relaxation without concomitant changes in cyclic GMP content of rat proximal colon. Br. J. Pharmacol. 117, 1204–1208 ( 1996).
    Article CAS Google Scholar
  24. Yuan, X.-J., Tod, M. L., Rubin, L. J. & Blaustein, M. P. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc. Natl. Acad. Sci. USA 93, 10489– 10494 (1996).
    Article CAS Google Scholar
  25. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-_S_-nitrosylation. Science 279, 234–237 (1998).
    Article CAS Google Scholar
  26. Kendrick, K. M. et al. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. Eur. J. Neurosci. 8, 1619–1634 (1996).
    Article Google Scholar
  27. Lipton, S. A., Rayudu, P. V., Choi, Y.-B., Sucher, N. J. & Chen, H.-S. V. Redox modulation of the NMDA receptor by NO-related species. Prog. Brain Res. 118 , 73–82 (1998).
    Article CAS Google Scholar
  28. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371 ( 1991).
    Article CAS Google Scholar
  29. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. & Snyder, S. H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661 (1993).
    Article CAS Google Scholar
  30. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with NMDA or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162–7166 ( 1995).
    Article CAS Google Scholar
  31. Adamson, D. C. et al. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV–1 gp41. Science 274, 1917–1921 (1996).
    Article CAS Google Scholar
  32. Garthwaite, J., Charles, S. L. & Chess, W. R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 ( 1988).
    Article CAS Google Scholar
  33. Bredt, D. S. & Snyder, S. H. Nitric oxide, a novel neuronal messenger. Neuron 8, 3– 11 (1992).
    Article CAS Google Scholar
  34. Shibuki, K. & Okada, D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349, 326–328 (1991).
    Article CAS Google Scholar
  35. Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 ( 1992).
    Article CAS Google Scholar
  36. Aizenman, E., Brimecombe, J. C., Potthoff, W. K. & Rosenberg, P. A. Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial? Prog. Brain Res. 118, 53–71 (1998).
    Article CAS Google Scholar
  37. Wo, Z. G. & Oswald, R. E. Transmembrane topology of two kainate receptor subunits revealed by _N-_glycosylation. Proc. Natl. Acad. Sci. USA 91, 7154– 7158 (1994).
    Article CAS Google Scholar
  38. Hollmann, M., Maron, C. & Heinemann, S. F. _N-_glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343 ( 1994).
    Article CAS Google Scholar
  39. Wood, M. W., VanDongen, H. M. & VanDongen, A. M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 4882–4886 ( 1995).
    Article CAS Google Scholar
  40. Armstrong, N., Sun, Y., Chen, G.-Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 ( 1998).
    Article CAS Google Scholar
  41. Aizenman, E. & Potthoff, W. K. Lack of interaction between nitric oxide and the redox modulatory site of the NMDA receptor. Br. J. Pharmacol. 126, 296–300 (1999).
    Article CAS Google Scholar
  42. Bredt, D. S. et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P–450 reductase. Nature 351, 714–719 (1991).
    Article CAS Google Scholar
  43. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).
    Article CAS Google Scholar
  44. Stamler, J. S. & Feelisch, M. in Methods in Nitric Oxide Research (eds. Feelisch, M. & Stamler, J. S.) 521–539 (Wiley, Chichester, 1996).
    Google Scholar
  45. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD–95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).
    Article CAS Google Scholar
  46. Lander, H. M. et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem. 272, 4323–4326 (1997).
    Article CAS Google Scholar
  47. Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999).
    Article CAS Google Scholar
  48. Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217– 1221 (1992).
    Article CAS Google Scholar
  49. Sullivan, J. M. et al. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13, 929–936 ( 1994).
    Article CAS Google Scholar
  50. Choi, Y.-B. & Lipton, S. A. Identification and mechanisms of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180 (1999).
    Article CAS Google Scholar

Download references