Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation (original) (raw)
References
Hollmann, M. & Heinemann, S. F. Cloned glutamate receptors. Annu. Rev. Neurosci.17, 31– 108 (1994). ArticleCAS Google Scholar
McBain, C. J. & Mayer, M. L. _N-_Methyl-d-aspartic acid receptor structure and function. Physiol. Rev.74, 723–760 (1994). ArticleCAS Google Scholar
Choi, D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron1, 623–634 ( 1988). ArticleCAS Google Scholar
Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387 (1990). ArticleCAS Google Scholar
Dingledine, R., McBain, C. J. & McNamara, J. O. Excitatory amino acid receptors in epilepsy. Trends Pharmacol. Sci.11, 334–338 (1990). ArticleCAS Google Scholar
Lipton, S. A. & Rosenberg, P. A. Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med.330, 613–622 (1994). ArticleCAS Google Scholar
Manzoni, O. et al. Nitric oxide-induced blockade of NMDA receptors. Neuron8, 653–662 ( 1992). ArticleCAS Google Scholar
Lei, S. Z. et al. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron8, 1087–1099 (1992). ArticleCAS Google Scholar
Hoyt, K. R., Tang, L.-H., Aizenman, E. & Reynolds, I. J. Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res.592, 310–316 (1992). ArticleCAS Google Scholar
Lipton, S. A. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature364, 626–632 (1993). ArticleCAS Google Scholar
Manzoni, O. & Bockaert, J. Nitric oxide synthase activity endogenously modulates NMDA receptors. J. Neurochem.61, 368–370 (1993). ArticleCAS Google Scholar
Fagni, L., Olivier, M., Lafon-Cazal, M. & Bockaert, J. Involvement of divalent ions in the nitric oxide-induced blockade of N- methyl-D-aspartate receptors in cerebellar granule cells. Mol. Pharmacol.47, 1239–1247 (1995). CASPubMed Google Scholar
Omerovic, A., Chen, S.-J., Leonard, J. P. & Kelso, S. R. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes. J. Recept. Signal Transduct. Res.15, 811–827 (1995). ArticleCAS Google Scholar
Sucher, N. J., Awobuluyi, M., Choi, Y.-B. & Lipton, S. A. NMDA receptors: from genes to channels. Trends Pharmacol. Sci.17, 348–355 ( 1996). ArticleCAS Google Scholar
Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO signals: Translocation, regulation, and a consensus motif. Neuron18, 691–696 ( 1997). ArticleCAS Google Scholar
Bolotina, V. M., Najibi, S., Palacino, J. J., Pagaon, P. J. & Cohen, R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature368, 850–853 ( 1994). ArticleCAS Google Scholar
Kurenny, D. E., Moroz, L. L., Turner, R. W., Sharkey, K. A. & Barnes, S. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron13, 315–324 (1994). ArticleCAS Google Scholar
Gaston, B. et al. Relaxation of human bronchial smooth muscle by _S-_nitrosothiols in vitro. J. Pharmacol. Exp. Ther.268, 978–984 (1994). CASPubMed Google Scholar
Koivisto, A. & Nedergaard, J. Modulation of calcium-activated non-selective cation channel activity by nitric oxide in rat brown adipose tissue. J. Physiol. (Lond.)486, 59– 65 (1995). ArticleCAS Google Scholar
Koh, S. D., Campbell, J. D., Carl, A. & Sanders, K. M. Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J. Physiol. (Lond.)489, 735– 743 (1995). ArticleCAS Google Scholar
Campbell, D. L., Stamler, J. S. & Strauss, H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. J. Gen. Physiol.108, 277–293 (1996). ArticleCAS Google Scholar
Broillet, M.-C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modulation of sulfhydryl groups by NO compounds. Neuron16, 377– 385 (1996). ArticleCAS Google Scholar
Takeuchi, T., Kishi, M., Ishii, T., Nishio, H. & Hata, F. Nitric oxide-mediated relaxation without concomitant changes in cyclic GMP content of rat proximal colon. Br. J. Pharmacol.117, 1204–1208 ( 1996). ArticleCAS Google Scholar
Yuan, X.-J., Tod, M. L., Rubin, L. J. & Blaustein, M. P. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc. Natl. Acad. Sci. USA93, 10489– 10494 (1996). ArticleCAS Google Scholar
Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-_S_-nitrosylation. Science279, 234–237 (1998). ArticleCAS Google Scholar
Kendrick, K. M. et al. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. Eur. J. Neurosci.8, 1619–1634 (1996). Article Google Scholar
Lipton, S. A., Rayudu, P. V., Choi, Y.-B., Sucher, N. J. & Chen, H.-S. V. Redox modulation of the NMDA receptor by NO-related species. Prog. Brain Res.118 , 73–82 (1998). ArticleCAS Google Scholar
Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA88, 6368–6371 ( 1991). ArticleCAS Google Scholar
Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. & Snyder, S. H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci.13, 2651–2661 (1993). ArticleCAS Google Scholar
Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with NMDA or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA92, 7162–7166 ( 1995). ArticleCAS Google Scholar
Adamson, D. C. et al. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV–1 gp41. Science274, 1917–1921 (1996). ArticleCAS Google Scholar
Garthwaite, J., Charles, S. L. & Chess, W. R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature336, 385–388 ( 1988). ArticleCAS Google Scholar
Bredt, D. S. & Snyder, S. H. Nitric oxide, a novel neuronal messenger. Neuron8, 3– 11 (1992). ArticleCAS Google Scholar
Shibuki, K. & Okada, D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature349, 326–328 (1991). ArticleCAS Google Scholar
Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science258, 307–310 ( 1992). ArticleCAS Google Scholar
Aizenman, E., Brimecombe, J. C., Potthoff, W. K. & Rosenberg, P. A. Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial? Prog. Brain Res.118, 53–71 (1998). ArticleCAS Google Scholar
Wo, Z. G. & Oswald, R. E. Transmembrane topology of two kainate receptor subunits revealed by _N-_glycosylation. Proc. Natl. Acad. Sci. USA91, 7154– 7158 (1994). ArticleCAS Google Scholar
Hollmann, M., Maron, C. & Heinemann, S. F. _N-_glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron13, 1331–1343 ( 1994). ArticleCAS Google Scholar
Wood, M. W., VanDongen, H. M. & VanDongen, A. M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA92, 4882–4886 ( 1995). ArticleCAS Google Scholar
Armstrong, N., Sun, Y., Chen, G.-Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature395, 913–917 ( 1998). ArticleCAS Google Scholar
Aizenman, E. & Potthoff, W. K. Lack of interaction between nitric oxide and the redox modulatory site of the NMDA receptor. Br. J. Pharmacol.126, 296–300 (1999). ArticleCAS Google Scholar
Bredt, D. S. et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P–450 reductase. Nature351, 714–719 (1991). ArticleCAS Google Scholar
Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem.70, 2446–2453 (1998). ArticleCAS Google Scholar
Stamler, J. S. & Feelisch, M. in Methods in Nitric Oxide Research (eds. Feelisch, M. & Stamler, J. S.) 521–539 (Wiley, Chichester, 1996). Google Scholar
Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD–95 and α1-syntrophin mediated by PDZ domains. Cell84, 757–767 (1996). ArticleCAS Google Scholar
Lander, H. M. et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem.272, 4323–4326 (1997). ArticleCAS Google Scholar
Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science284, 651–654 (1999). ArticleCAS Google Scholar
Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science256, 1217– 1221 (1992). ArticleCAS Google Scholar
Sullivan, J. M. et al. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron13, 929–936 ( 1994). ArticleCAS Google Scholar
Choi, Y.-B. & Lipton, S. A. Identification and mechanisms of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron23, 171–180 (1999). ArticleCAS Google Scholar