Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1 (original) (raw)

References

  1. Zoghbi, H. Y. & Orr, H. T. Spinocerebellar ataxia type 1. Seminars in Cell Biology: Unstable Repeat Diseases Vol. 6, 29–35 (Saunders, Philadelphia, 1995 ).
    Article Google Scholar
  2. Matilla, A. et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci. 18, 5508–5516 (1998).
    Article CAS Google Scholar
  3. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).
    Article CAS Google Scholar
  4. Clark, H. B. et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385–7395 (1997).
    Article CAS Google Scholar
  5. Skinner, P. J. et al. Ataxin-1 with extra glutamines induces alterations in nuclear matrix-associated structures. Nature 389, 971–974 (1997).
    Article CAS Google Scholar
  6. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).
    Article CAS Google Scholar
  7. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030– 15034 (1998).
    Article CAS Google Scholar
  8. Imai, Y., Davey, J., Kawagishi-Kobayashi, M. & Yamamoto, M. Genes encoding farnesyl cysteine carboxyl methyltransferase in Schizosaccharomyces pombe and Xenopus laevis. Mol. Cell. Biol. 17, 1543–1551 (1997).
    Article CAS Google Scholar
  9. Mitchell, C. A., Brown, S., Campbell, J. K., Munday, A. D. & Speed, C. J. Regulation of second messengers by the inositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 24, 994–1000 ( 1996).
    Article CAS Google Scholar
  10. Mori, Y. et al. Differential distribution of TRP Ca2+ channel isoforms in mouse brain. Neuroreport 9, 507–515 (1998).
    CAS PubMed Google Scholar
  11. Yamada, K. et al. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7, 2013– 2017 (1996).
    Article CAS Google Scholar
  12. Mailleux, P., Takazawa, K., Erneux, C. & Vanderhaeghen, J. J. Comparison of neuronal inositol 1,4,5-trisphosphate 3-kinase and receptor mRNA distributions in the adult rat brain using in situ hybridization histochemistry. Neuroscience 49, 577–590 (1992).
    Article CAS Google Scholar
  13. Kotera, J. et al. Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development. Eur. J. Biochem. 249, 434–442 (1997).
    Article CAS Google Scholar
  14. Roustan, P. et al. The rat phospholipase C beta 4 gene is expressed at high abundance in cerebellar Purkinje cells. Neuroreport 6, 1837–1841 (1995).
    Article CAS Google Scholar
  15. Inglis, J. D., Lee, M., Davidson, D. R. & Hill, R. E. Isolation of two cDNAs encoding novel alpha 1-antichymotrypsin-like proteins in a murine chondrocytic cell line. Gene 106, 213– 220 (1991).
    Article CAS Google Scholar
  16. Akaaboune, M., Ma, J., Festoff, B. W., Greenberg, B. D. & Hantai, D. Neurotrophic regulation of mouse muscle beta-amyloid protein precursor and alpha 1-antichymotrypsin as revealed by axotomy. J. Neurobiol. 25, 503–514 (1994).
    Article CAS Google Scholar
  17. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation . Neuron 21, 799–811 (1998).
    Article CAS Google Scholar
  18. Abraham, C. R., Selkoe, D. J. & Potter, H. Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 52, 487–501 (1988).
    Article CAS Google Scholar
  19. Das, S. & Potter, H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456 ( 1995).
    Article CAS Google Scholar
  20. Koo, E. H., Abraham, C. R., Potter, H., Cork, L. C. & Price, D. L. Developmental expression of alpha 1-antichymotrypsin in brain may be related to astrogliosis. Neurobiol. Aging 12, 495–501 ( 1991).
    Article CAS Google Scholar
  21. Tanaka, J., Ichikawa, R., Watanabe, M., Tanaka, K. & Inoue, Y. Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses. Neuroreport 8, 2461–2464 ( 1997).
    Article CAS Google Scholar
  22. Birnbaumer, L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. USA 93, 15195–15202 ( 1996).
    Article CAS Google Scholar
  23. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671 (1996).
    Article CAS Google Scholar
  24. Drayer, A. L. et al. The family of inositol and phosphatidylinositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 24, 1001–1005 (1996).
    Article CAS Google Scholar
  25. Woscholski, R. & Parker, P. J. Inositol lipid 5-phosphatases—traffic signals and signal traffic. Trends Biochem. Sci. 22, 427–431 (1997).
    Article CAS Google Scholar
  26. De Smedt, F., Verjans, B., Mailleux, P. & Erneux, C. Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase. High levels of mRNA in cerebellar Purkinje cells. FEBS Lett. 347, 69–72 ( 1994).
    Article CAS Google Scholar
  27. Takei, K., et al. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca2+-ATPase, and calsequestrin. J. Neurosci. 12, 489–505 (1992).
    Article CAS Google Scholar
  28. Villa, A. et al. The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Neuroscience 49, 467–477 (1992).
    Article CAS Google Scholar
  29. Volpe, P., Nori, A., Martini, A., Sacchetto, R. & Villa, A. Multiple/heterogeneous Ca2+ stores in cerebellum Purkinje neurons. Comp. Biochem. Physiol. Comp. Physiol. 105, 205–211 ( 1993).
    Article CAS Google Scholar
  30. Matsumoto, M. et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379, 168–171 (1996).
    Article CAS Google Scholar
  31. Street, V. A. et al. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J. Neurosci. 17, 635–645 (1997).
    Article CAS Google Scholar
  32. Miller, K. K., Verma, A., Snyder, S. H. & Ross, C. A. Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization . Neuroscience 43, 1–9 (1991).
    Article CAS Google Scholar
  33. Nakanishi, S., Maeda, N. & Mikoshiba, K. Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain . J. Neurosci. 11, 2075– 2086 (1991).
    Article CAS Google Scholar
  34. Ross, C. A., Danoff, S. K., Schell, M. J., Snyder, S. H. & Ullrich, A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 89, 4265–4269 (1992).
    Article CAS Google Scholar
  35. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13 –26 (1998).
    Article CAS Google Scholar
  36. Verkhratsky, A. & Toescu, E. C. Calcium and neuronal aging. Trends Neurosci. 21, 2– 7 (1998).
    Article CAS Google Scholar
  37. Liu, B. F., Xu, X., Fridman, R., Muallem, S. & Kuo, T. H. Consequences of functional expression of the plasma membrane Ca2+pump isoform 1a. J. Biol. Chem. 271, 5536–5544 (1996).
    Article CAS Google Scholar
  38. Rando, R. R. Chemical biology of protein isoprenylation/methylation. Biochim. Biophys. Acta 1300, 5–16 (1996).
    Article Google Scholar
  39. Clarke, S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues . Annu. Rev. Biochem. 61, 355– 386 (1992).
    Article CAS Google Scholar
  40. Hrycyna, C. A. & Clarke, S. Modification of eukaryotic signaling proteins by _C_-terminal methylation reactions. Pharmacol. Ther. 59, 281–300 (1993).
    Article CAS Google Scholar
  41. Choy, E., et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69– 80 (1999).
    Article CAS Google Scholar
  42. Cummings, C. J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 ( 1998).
    Article CAS Google Scholar
  43. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994).
    Article CAS Google Scholar
  44. Masuyama, H. & MacDonald, P. N. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J. Cell. Biochem. 71, 429–440 (1998).
    Article CAS Google Scholar
  45. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L. & O'Malley, B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA 96, 1858–1862 (1999).
    Article CAS Google Scholar
  46. Zhang, J., Guenther, M. G., Carthew, R. W. & Lazar, M. A. Proteasomal regulation of nuclear receptor corepressor-mediated repression . Genes Dev. 12, 1775–1780 (1998).
    Article CAS Google Scholar
  47. Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl. Acad . Sci. USA 96, 2627–2632 (1999).
    Article CAS Google Scholar

Download references