A gene expression database for the molecular pharmacology of cancer (original) (raw)
Boyd, M.R. & Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res. 34, 91– 109 (1995). ArticleCAS Google Scholar
Alley, M.C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988). CASPubMed Google Scholar
Monks, A. et al. Feasibility of a high flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl Cancer Inst. 83, 757–766 (1991). ArticleCAS Google Scholar
Grever, M.R., Schepartz, S.A. & Chabner, B.A. The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 19, 622–638 (1992). CASPubMed Google Scholar
Stinson, S.F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992). CASPubMed Google Scholar
Boyd, M.R. in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (ed. Teicher, B.A.) 23–42 (Humana Press, Totowa, 1997). Book Google Scholar
Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227– 235 (2000). ArticleCAS Google Scholar
Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science275, 343– 349 (1997). ArticleCAS Google Scholar
Weinstein, J.N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science258, 447– 451 (1992). ArticleCAS Google Scholar
van Osdol, W.W., Myers, T.G., Paull, K.D., Kohn, K.W. & Weinstein, J.N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 ( 1994). ArticleCAS Google Scholar
Paull, K.D., Hamel, E. & Malspeis, L. Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. in Cancer Chemotherapeutic Agents (ed. Foye, W.E.) 1574– 1581 (American Chemical Soc. Books, Washington, DC, 1993). Google Scholar
Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088 –1092 (1989). ArticleCAS Google Scholar
Shi, L.M., Fan, Y., Myers, T.G., Paull, K.D. & Weinstein, J.N. Mining the NCI anticancer drug discovery databases: genetic function approximation for the quantitative structure-activity relationship study of anticancer ellipticine analogs. J. Chem. Inf. Comput. Sci. 38, 189–199 ( 1998). ArticleCAS Google Scholar
Shi, L.M. et al. Mining the National Cancer Institute's anticancer drug screen database: cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol. Pharmacol. 53, 241–251 (1998). ArticleCAS Google Scholar
Alvarez, M. et al. Generation of a drug resistance profile by quantitation of MDR-1/P-glycoprotein expression in the cell lines of the NCI anticancer drug screen. J. Clin. Invest. 95, 2205– 2214 (1995). ArticleCAS Google Scholar
Izquierdo, M.A. et al. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int. J. Cancer65, 230–237 (1996). ArticleCAS Google Scholar
O'Connor, P.M. et al. Characterization of the p53-tumor suppressor pathway in cells of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–4300 ( 1997). CASPubMed Google Scholar
Freije, J.M. et al. Identification of compounds with preferential inhibitory activity against low-Nm23-expressing human breast carcinoma and melanoma cell lines . Nature Med. 3, 395–401 (1997). ArticleCAS Google Scholar
Koo, H.-M. et al. Enhanced sensitivity to 1-β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. J. Natl Cancer Inst. 56, 5211 –5216 (1996). CAS Google Scholar
Wosikowski, K. et al. Identification of epidermal growth factor receptor and c-erbB2 pathway inhibitors by correlation with gene expression patterns. J. Natl Cancer Inst. 89, 1505–1513 (1997). ArticleCAS Google Scholar
Bates, S.E. et al. Reversal of multidrug resistance. Prog. Clin. Biol. Res. 389, 33–37 ( 1994). CASPubMed Google Scholar
Bates, S.E. et al. Molecular targets in the National Cancer Institute drug screen . J. Cancer Res. Clin. Oncol. 121, 495– 500 (1995). ArticleCAS Google Scholar
Lee, J.-S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994). CASPubMed Google Scholar
Wu, L. et al. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res . 52, 3029–3034 ( 1992). CASPubMed Google Scholar
Kitada, S. et al. Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines. Am. J. Pathol . 152, 51–61 ( 1998). CASPubMedPubMed Central Google Scholar
Monks, A., Scudiero, D.A., Johnson, G.S., Paull, K.D. & Sausville, E.A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 ( 1997). CASPubMed Google Scholar
Myers, T.G. et al. A protein expression database for the molecular pharmacology of cancer. Electrophoresis18, 647– 653 (1997). ArticleCAS Google Scholar
Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467–470 ( 1995). ArticleCAS Google Scholar
Schena, M. et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA93, 10614–10619 (1996). ArticleCAS Google Scholar
DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996). ArticleCAS Google Scholar
Scudiero, D.A., Monks, A. & Sausville, E.A. Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J. Natl Cancer Inst. 90, 862 (1998).
Capranico, G. et al. Mapping drug interactions at the covalent topoisomerase II-DNA complex by bisantrene/amsacrine congeners. J. Biol. Chem. 273, 12732–12739 (1998). ArticleCAS Google Scholar
Chen, A.Y. & Liu, L.F. DNA topoisomerases: essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol. 94, 194–218 (1994). Google Scholar
Pommier, Y., Tanizawa, A. & Kohn, K.W. Mechanism of topoisomerase I inhibition by anticancer drugs. Adv. Pharmacol. 29B, 73– 92 (1993). Google Scholar
Shao, R.-G. et al. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes . EMBO J. (in press).
Pommier, Y. DNA topoisomease II inhibitors. in Cancer Therapeutics: Experimental and Clinical Agents (ed. Teicher, B.A.) 153–174 (Humana Press, Totowa, 1997). Book Google Scholar
Weinstein, J.N. et al. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute's drug discovery program for cancer and AIDS. Stem Cells12, 13–22 ( 1994). ArticleCAS Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863– 14868 (1998). ArticleCAS Google Scholar
Fischel, J.L. et al. Dihydropyrimidine dehydrogenase: a tumoral target for fluorouracil modulation. Clin. Cancer Res. 1, 991– 996 (1995). CASPubMed Google Scholar
McLeod, H.L. et al. Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours. Br. J. Cancer77, 461 –465 (1998). ArticleCAS Google Scholar
Cooney, D.A. & Handschumacher, R.E. L-asparaginase and L-asparagine metabolism. Annu. Rev. Pharmacol. 10, 421 –440 (1970). ArticleCAS Google Scholar
Efron, B. & Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Statistician37, 36–48 (1983). Google Scholar
Wada, H. et al. Antitumor enzyme: polyethylene glycol-modified asparaginase. Ann. NY Acad. Sci. 613, 95–108 (1990). ArticleCAS Google Scholar
Tanabe, L. et al. MedMiner: an internet tool for mining the biomedical literature, with application to gene expression profiling. Biotechniques27, 1210–1217 (1999). ArticleCAS Google Scholar
Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21 (suppl.), 33–37 (1999 ). ArticleCAS Google Scholar
Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 ( 1996). ArticleCAS Google Scholar