Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells (original) (raw)
References
Hardy, C.L. The homing of hematopoietic stem cells to the bone marrow. Am. J. Med. Sci.309, 260–266 (1995). ArticleCAS Google Scholar
Papayannopoulou, T. & Craddock, C. Homing and trafficking of hemopoietic progenitor cells. Acta Haematol.97, 97–104 (1997). ArticleCAS Google Scholar
Frenette, P.S., Subbarao, S., Mazo, I.B., von Andrian, U.H. & Wagner, D.D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl. Acad. Sci. USA95, 14423–14428 (1998). ArticleCAS Google Scholar
Wiesmann, A. & Spangrude, G.J. Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors . Exp. Hematol.27, 946– 955 (1999). ArticleCAS Google Scholar
Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science283, 845 –848 (1999). ArticleCAS Google Scholar
Zanjani, E.D., Flake, A.W., Almeida-Porada, G., Tran, N. & Papayannopoulou, T. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4- dependent function. Blood94, 2515–2522 (1999). CASPubMed Google Scholar
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis . Science275, 964–967 (1997). ArticleCAS Google Scholar
Miyoshi, H., Smith, K.A, Mosier, D.E, Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science283, 682–686 (1999). ArticleCAS Google Scholar
von Andrian, U.H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun.6, 85–96 (1998). ArticleCAS Google Scholar
Menger, M.D. & Lehr, H.A. Scope and perspectives of intravital microscopy-bridge over from in vitro to in vivo. Immunol. Today14, 519–522 ( 1993). ArticleCAS Google Scholar
Hendrikx, P.J., Martens, A.C.M., Hagenbeek, A., Heij, J.F. & Visser, J.W.M. Homing of fluorescently labeled murine hematopoietic stem cells. Exp. Hematol.24, 129–140 (1996). CASPubMed Google Scholar
Lanzkron, S.M., Collector, M.I. & Sharkis, S.J. Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood93, 1916–1921 (1999). CASPubMed Google Scholar
Choi, S., Tang, X. & Cory, D. Constant time imaging approaches to NMR microscopy. Int. J. Imaging Sci. Technol.8, 263–276 (1997). Article Google Scholar
Jacobs, R.E., Ahrens, E.T., Meade, T.J. & Fraser, S.E. Looking deeper into vertebrate development. Trends Cell Biol.9, 73–76 (1999). ArticleCAS Google Scholar
Johnson, G.A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q.9, 1–30 ( 1993). CASPubMed Google Scholar
Safarik, I. & Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B722, 33–53 (1999). ArticleCAS Google Scholar
Weissleder, R., Cheng, H., Bogdanova, A. & Bogdanov, A.J. Magnetically labeled cells can be detected by MR imaging. J. Magn. Reson. Imaging7, 258–263 ( 1997). ArticleCAS Google Scholar
Schoepf, U., Marecos, E., Melder, R., Jain, R. & Weissleder, R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques24, 642–651 (1998). ArticleCAS Google Scholar
Dodd, S.J. et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J.76, 103– 109 (1999). ArticleCAS Google Scholar
Hawrylak, N. et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp. Neurol.121, 181 –192 (1993). ArticleCAS Google Scholar
Bulte, J., Zhang, S., Van Geldern, P., Duncan, I. & Frank, J. MR tracking of magnetically labeled glial cells. Radiol. Soc. North Am.213, 225 (1999).
Weissleder, R. et al. In vivo MR imaging of transgene expression. Nat. Med.6, 351–354 ( 2000). ArticleCAS Google Scholar
Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science285, 1569– 1572 (1999). ArticleCAS Google Scholar
Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells . Proc. Natl. Acad. Sci. USA91, 664– 668 (1994). ArticleCAS Google Scholar
Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med.4, 1449–1452 (1998). ArticleCAS Google Scholar
Josephson, L., Tung, C.H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic Tat peptide conjugates . Bioconjug. Chem.10, 186– 191 (1999). ArticleCAS Google Scholar
Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem.271, 18188–18193 (1996). ArticleCAS Google Scholar
Avrameas, A., Ternynck, T., Nato, F., Buttin, G. & Avrameas, S. Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules. Proc. Natl. Acad. Sci. USA95, 5601–5606 (1998). ArticleCAS Google Scholar
Phelan, A., Elliott, G. & O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol.16, 440– 443 (1998). ArticleCAS Google Scholar
Mann, D.A. & Frankel, A.D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J.10, 1733– 1739 (1991). ArticleCAS Google Scholar
Ensoli, B. et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol.67, 277–287 ( 1993). CASPubMedPubMed Central Google Scholar
Zandstra, P.W., Conneally, E., Petzer, A.L., Piret, J.M. & Eaves, C.J. Cytokine manipulation of primitive human hematopoietic cell self- renewal. Proc. Natl. Acad. Sci. USA94, 4698–4703 ( 1997). ArticleCAS Google Scholar
Rogers, J.M., Jung, C.W., Lewis, J. & Groman, E.V. Use of USPIO-induced magnetic susceptibility artifacts to identify sentinel lymph nodes and lymphatic drainage patterns. Magn. Reson. Imaging16, 917–923 (1998). ArticleCAS Google Scholar
Holt, R.W., Diaz, P.J., Duerk, J.L. & Bellon, E.M. MR susceptometry: an external-phantom method for measuring bulk susceptibility from field-echo phase reconstruction maps. J. Magn. Reson. Imaging4, 809–818 (1994). ArticleCAS Google Scholar
Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. & Brady, T. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med.29, 599–604 (1993). ArticleCAS Google Scholar
Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity . American Journal of Roentgeneology152, 167–173 (1989). ArticleCAS Google Scholar
Harisinghani, M.G. et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies. Am. J. Roentgenol.172, 1347–1351 (1999). ArticleCAS Google Scholar
Lynch, W.P., Sharpe, A.H. & Snyder, E.Y. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J. Virol.73, 6841– 6851 (1999). CASPubMedPubMed Central Google Scholar