Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells (original) (raw)

References

  1. Hardy, C.L. The homing of hematopoietic stem cells to the bone marrow. Am. J. Med. Sci. 309, 260–266 (1995).
    Article CAS Google Scholar
  2. Papayannopoulou, T. & Craddock, C. Homing and trafficking of hemopoietic progenitor cells. Acta Haematol. 97, 97–104 (1997).
    Article CAS Google Scholar
  3. Frenette, P.S., Subbarao, S., Mazo, I.B., von Andrian, U.H. & Wagner, D.D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl. Acad. Sci. USA 95, 14423–14428 (1998).
    Article CAS Google Scholar
  4. Wiesmann, A. & Spangrude, G.J. Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors . Exp. Hematol. 27, 946– 955 (1999).
    Article CAS Google Scholar
  5. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845 –848 (1999).
    Article CAS Google Scholar
  6. Zanjani, E.D., Flake, A.W., Almeida-Porada, G., Tran, N. & Papayannopoulou, T. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4- dependent function. Blood 94, 2515–2522 (1999).
    CAS PubMed Google Scholar
  7. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis . Science 275, 964–967 (1997).
    Article CAS Google Scholar
  8. Miyoshi, H., Smith, K.A, Mosier, D.E, Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).
    Article CAS Google Scholar
  9. von Andrian, U.H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun. 6, 85–96 (1998).
    Article CAS Google Scholar
  10. Menger, M.D. & Lehr, H.A. Scope and perspectives of intravital microscopy-bridge over from in vitro to in vivo. Immunol. Today 14, 519–522 ( 1993).
    Article CAS Google Scholar
  11. Hendrikx, P.J., Martens, A.C.M., Hagenbeek, A., Heij, J.F. & Visser, J.W.M. Homing of fluorescently labeled murine hematopoietic stem cells. Exp. Hematol. 24, 129–140 (1996).
    CAS PubMed Google Scholar
  12. Lanzkron, S.M., Collector, M.I. & Sharkis, S.J. Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93, 1916–1921 (1999).
    CAS PubMed Google Scholar
  13. Choi, S., Tang, X. & Cory, D. Constant time imaging approaches to NMR microscopy. Int. J. Imaging Sci. Technol. 8, 263–276 (1997).
    Article Google Scholar
  14. Jacobs, R.E., Ahrens, E.T., Meade, T.J. & Fraser, S.E. Looking deeper into vertebrate development. Trends Cell Biol. 9, 73–76 (1999).
    Article CAS Google Scholar
  15. Johnson, G.A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1–30 ( 1993).
    CAS PubMed Google Scholar
  16. Safarik, I. & Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B 722, 33–53 (1999).
    Article CAS Google Scholar
  17. Weissleder, R., Cheng, H., Bogdanova, A. & Bogdanov, A.J. Magnetically labeled cells can be detected by MR imaging. J. Magn. Reson. Imaging 7, 258–263 ( 1997).
    Article CAS Google Scholar
  18. Schoepf, U., Marecos, E., Melder, R., Jain, R. & Weissleder, R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques 24, 642–651 (1998).
    Article CAS Google Scholar
  19. Dodd, S.J. et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J. 76, 103– 109 (1999).
    Article CAS Google Scholar
  20. Hawrylak, N. et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp. Neurol. 121, 181 –192 (1993).
    Article CAS Google Scholar
  21. Bulte, J., Zhang, S., Van Geldern, P., Duncan, I. & Frank, J. MR tracking of magnetically labeled glial cells. Radiol. Soc. North Am. 213, 225 (1999).
  22. Weissleder, R. et al. In vivo MR imaging of transgene expression. Nat. Med. 6, 351–354 ( 2000).
    Article CAS Google Scholar
  23. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569– 1572 (1999).
    Article CAS Google Scholar
  24. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells . Proc. Natl. Acad. Sci. USA 91, 664– 668 (1994).
    Article CAS Google Scholar
  25. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).
    Article CAS Google Scholar
  26. Josephson, L., Tung, C.H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic Tat peptide conjugates . Bioconjug. Chem. 10, 186– 191 (1999).
    Article CAS Google Scholar
  27. Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193 (1996).
    Article CAS Google Scholar
  28. Avrameas, A., Ternynck, T., Nato, F., Buttin, G. & Avrameas, S. Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules. Proc. Natl. Acad. Sci. USA 95, 5601–5606 (1998).
    Article CAS Google Scholar
  29. Phelan, A., Elliott, G. & O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol. 16, 440– 443 (1998).
    Article CAS Google Scholar
  30. Mann, D.A. & Frankel, A.D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 10, 1733– 1739 (1991).
    Article CAS Google Scholar
  31. Ensoli, B. et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67, 277–287 ( 1993).
    CAS PubMed PubMed Central Google Scholar
  32. Zandstra, P.W., Conneally, E., Petzer, A.L., Piret, J.M. & Eaves, C.J. Cytokine manipulation of primitive human hematopoietic cell self- renewal. Proc. Natl. Acad. Sci. USA 94, 4698–4703 ( 1997).
    Article CAS Google Scholar
  33. Rogers, J.M., Jung, C.W., Lewis, J. & Groman, E.V. Use of USPIO-induced magnetic susceptibility artifacts to identify sentinel lymph nodes and lymphatic drainage patterns. Magn. Reson. Imaging 16, 917–923 (1998).
    Article CAS Google Scholar
  34. Holt, R.W., Diaz, P.J., Duerk, J.L. & Bellon, E.M. MR susceptometry: an external-phantom method for measuring bulk susceptibility from field-echo phase reconstruction maps. J. Magn. Reson. Imaging 4, 809–818 (1994).
    Article CAS Google Scholar
  35. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. & Brady, T. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).
    Article CAS Google Scholar
  36. Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity . American Journal of Roentgeneology 152, 167–173 (1989).
    Article CAS Google Scholar
  37. Harisinghani, M.G. et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies. Am. J. Roentgenol. 172, 1347–1351 (1999).
    Article CAS Google Scholar
  38. Lynch, W.P., Sharpe, A.H. & Snyder, E.Y. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J. Virol. 73, 6841– 6851 (1999).
    CAS PubMed PubMed Central Google Scholar

Download references