Pomerantz, R.J. & Trono, D. Genetic therapies for HIV infections: promise for the future. AIDS9, 985–993 (1995). ArticleCASPubMed Google Scholar
Vile, R.G., Tuszynski, A. & Castleden, S. Retroviral vectors. from laboratory tools to molecular medicine. Mol.Biotechnol., 139–158 (1996).
Weichselbaum, R.R. & Kufe, D. Gene therapy of cancer. Lancet349 (Suppl. 2), SII10–SII12 (1997). ArticlePubMed Google Scholar
Blaese, M. et al. Vectors in cancer therapy: how will they deliver?. Cancer Gene Ther.2, 291–297 (1995). CASPubMed Google Scholar
Vile, R. & Russell, S.J. Gene transfer technologies for the gene therapy of cancer. Gene Ther.1, 88–98 (1994). CASPubMed Google Scholar
Varmus, H.E. & Brown, P. In Mobile DNA (eds Berg, D.E. & Howe, M.M.) 53–108 (American Society for Microbiology, Washington, D.C.; 1988). Google Scholar
Temin, H.M. In Gene transfer (ed. Kucherlapati, R.) 144–187 (Plenum Press, New York; 1986). Google Scholar
Bukrinsky, M.I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature365, 666–670 (1993). ArticleCASPubMed Google Scholar
Lewis, P. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol.68, 510–516 (1994). CASPubMedPubMed Central Google Scholar
Schwedler, U., Kornbluth, R.S. & Trono, D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA91, 6992–6996 (1999). Article Google Scholar
Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T. & Shimada, T. Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of non-dividing cells. Hum. Gene Ther.9, 467–475 (1999). Article Google Scholar
Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA93, 11382–11388 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol.72, 9873–9880 (1998). CASPubMedPubMed Central Google Scholar
Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol.72, 8463–8471 (1998). CASPubMedPubMed Central Google Scholar
Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T. & Shimada, T. Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of nondividing cells. Hum. Gene Ther.9, 467–475 (1998). ArticleCASPubMed Google Scholar
Poeschla, E., Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy. Proc. Natl. Acad. Sci. USA93, 11395–11399 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hu, W.-S. & Temin, H.M. Retroviral recombination and reverse transcription. Science250, 1227–1233 (1990). ArticleCASPubMed Google Scholar
Dornburg, R. From the natural evolution to the genetic manipulation of the host range of retroviruses. Biol. Chem.378, 457–468 (1997). CASPubMed Google Scholar
Kewalramani, V.N., Panganiban, A.T. & Emerman, M. Spleen necrosis virus, an avian immunosuppressive retrovirus, shares a receptor with the type D simian retroviruses. J. Virol.66, 3026–3031 (1992). CASPubMedPubMed Central Google Scholar
Martinez, I. & Dornburg, R. Mapping of receptor binding domains in the envelope protein of spleen necrosis virus. J. Virol.69, 4339–4346 (1995). CASPubMedPubMed Central Google Scholar
Martinez, I. & Dornburg, R. Mutational analysis of the envelope protein of spleen necrosis virus. J. Virol.70, 6036–6043 (1996). CASPubMedPubMed Central Google Scholar
Gautier, R., Jiang, A., Rousseau, V., Dornburg, R. & Jaffredo, T. The reticuloendotheliosis viruses strain A, REV-A or spleen necrosis virus, SNV, are non-infectious in human cells. J. Virol.74, 518–522 in press (2000). ArticleCASPubMedPubMed Central Google Scholar
Chu, T.-H. & Dornburg, R. Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. J. Virol.69, 2659–2663 (1995). CASPubMedPubMed Central Google Scholar
Chu, T.-H., Martinez, I., Sheay, W.C. & Dornburg, R. Cell targeting with retroviral vector particles containing antibody–envelope fusion proteins. Gene. Ther.1, 292–299 (1994). CASPubMed Google Scholar
Chu, T.-H. & Dornburg, R. Towards highly-efficient cell-type-specific gene transfer with retroviral vectors that display a single chain antibody. J. Virol71, 720–725 (1997). CASPubMedPubMed Central Google Scholar
Jiang, A., Chu, T.-H.T., Nocken, F., Cichutek, K. & Dornburg, R. Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J. Virol.72, 10148–10156 (1998). CASPubMedPubMed Central Google Scholar
Engelstädter, M. et al. Targeting human T-cells by retroviral vectors displaying antibody domains selected from a phage display library. Hum. Gene Ther.11, 293–303 (2000). ArticlePubMed Google Scholar
Jiang, A. & Dornburg, R. In vivo cell-type-specific gene delivery with retroviral vectors that display single chain antibodies. Gene Ther.6, 1982–1987 (1999). ArticleCASPubMed Google Scholar
Kootstra, N.A. & Schuitemaker, H. Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and vpr is comparable to wild-type HIV-1 in primary macrophages. Virology253, 170–180 (1999). ArticleCASPubMed Google Scholar
Fouchier, R.A., Meyer, B.E., Simon, J.H., Fischer, U. & Malim, M.H. HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for gag processing but not for post-entry nuclear import. EMBO J.16, 4531–4539 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yoneda, Y. How proteins are transported from cytoplasm to the nucleus. J Biochem. (Tokyo)121, 811–817 (1997). ArticleCAS Google Scholar
Moroianu, J. Molecular mechanisms of nuclear protein transport. Crit. Rev. Eukaryot. Gene Expr.7, 61–72 (1997). ArticleCASPubMed Google Scholar
Boulikas, T. Nuclear import of protein kinases and cyclins. J. Cell Biochem.60, 61–82 (1996). ArticleCASPubMed Google Scholar
Martinez, I. & Dornburg, R. Partial reconstitution of a replication-competent retrovirus in helper cells with partial overlaps between vector and helper cell genomes. Hum. Gene Ther.7, 705–712 (1996). ArticleCASPubMed Google Scholar
Stevenson, M. & Gendelman, H.E. Cellular and viral determinants that regulate HIV-1 infection in macrophages. J. Leuk. Biol.56, 278–288 (1994). ArticleCAS Google Scholar
Huang, Z.B. et al. Infection of macrophages with lymphotropic human immunodeficiency virus type 1 can be arrested after viral DNA synthesis. J. Virol.67, 6893–6896 (1993). CASPubMedPubMed Central Google Scholar
Blaese, R.M. et al. T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science270, 475–480 (1995). ArticleCASPubMed Google Scholar
von Schwedler, U., Kornbluth, R.S. & Trono, D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA.91, 6992–6996 (1994). ArticleCASPubMedPubMed Central Google Scholar
Collman, R. et al. Infection of monocyte-derived macrophages with human immunodeficiency virus type 1 (HIV-1). monocyte-tropic and lymphocyte-tropic strains of HIV-1 show distinctive patterns of replication in a panel of cell types. J. Exp. Med.170, 1149–1163 (1989). ArticleCASPubMed Google Scholar
Temin, H.M. The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J. Natl. Cancer Inst.46, 3–7 (1971). CASPubMed Google Scholar
Coffin, J.M. Genetic diversity and evolution of retroviruses. Curr. Top. Microbiol. Immunol.176, 143–164 (1992). CASPubMed Google Scholar
Deminie, C.A. & Emerman, M. Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J. Virol.68, 4442–4449 (1994). CASPubMedPubMed Central Google Scholar
Deminie, C.A. & Emerman, M. Incorporation of human immunodeficiency virus type 1 gag proteins into murine leukemia virus virions. J. Virol.67, 6499–6506 (1993). CASPubMedPubMed Central Google Scholar
Mikawa, T., Fischman, D.A., Dougherty, J.P. & Brown, A.M.C. In vivo analysis of a new lacZ retrovirus vector suitable for lineage marking in avian and other species. Exp. Cell Res.195, 516–523 (1992). Article Google Scholar
Martinez, I. & Dornburg, R. Improved retroviral packaging lines derived from spleen necrosis virus. Virology208, 234–241 (1995). ArticleCASPubMed Google Scholar
Urban, A., Neukirchen, S. & Jaeger, K.E. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension pcr. Nucleic Acids Res.25, 2227–2228 (1997). ArticleCASPubMedPubMed Central Google Scholar
Picard, V., Ersdal-Badju, E., Lu, A. & Bock, S.C. A rapid and efficient one-tube PCR-based mutagenesis technique using pfu DNA polymerase. Nucleic Acids Res.22, 2587–2591 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Press,Cold Spring Harbor, NY: 1995). Google Scholar