DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci (original) (raw)

References

  1. Lewin, B. The mystique of epigenetics. Cell 93, 301 –303 (1998).
    Article CAS Google Scholar
  2. Jones, P.L. & Wolffe, A.P. Relationships between chromatin organization and DNA methylation in determining gene expression. Semin. Cancer Biol. 9, 339–347 (1999).
    Article CAS Google Scholar
  3. Sadoni, N. et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J. Cell Biol. 146, 1211–1226 ( 1999).
    Article CAS Google Scholar
  4. Kass, S.U. & Wolffe, A.P. Histones, histone modifications, and the inheritance of chromatin structure. in Epigenetic Mechanisms of Gene Regulation (eds Russo, V.E.A., Martienssen, R.A. & Riggs, A.D.) 529–546 (Cold Spring Harbor Laboratory Press, New York, 1996).
    Google Scholar
  5. Bird, A. The essentials of DNA methylation. Cell 70, 5–8 (1992).
    Article CAS Google Scholar
  6. Eden, S. & Cedar, H. Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4, 255–259 (1994).
    Article CAS Google Scholar
  7. Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet. 21, 103–107 (1999).
    Article CAS Google Scholar
  8. Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl Acad. Sci. USA 95, 9430– 9435 (1998).
    Article CAS Google Scholar
  9. Bird, A.P. & Wolffe, A.P. Methylation-induced repression-belts, braces, and chromatin. Cell 99, 451– 454 (1999).
    Article CAS Google Scholar
  10. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187– 191 (1998).
    Article CAS Google Scholar
  11. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).
    Article CAS Google Scholar
  12. Ng, H.H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58 –61 (1999).
    Article CAS Google Scholar
  13. Wade, P.A. et al. Histone deacetylase directs the dominant silencing of transcription in chromatin: association with MeCP2 and the Mi-2 chromodomain SWI/SNF ATPase . Cold Spring Harb. Symp. Quant. Biol. 63, 435–445 (1998).
    Article CAS Google Scholar
  14. Johnson, C.A. & Turner, B.M. Histone deacetylases: complex transducers of nuclear signals. Semin. Cell Dev. Biol. 10, 179–188 (1999).
    Article CAS Google Scholar
  15. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones . Cell 93, 325–328 (1998).
    Article CAS Google Scholar
  16. Krude, T. Chromatin replication: finding the right connection. Curr. Biol. 9, 394–396 ( 1999).
    Article Google Scholar
  17. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971–983 (1988).
    Article CAS Google Scholar
  18. Yen, R.W. et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 20, 2287–2291 (1992).
    Article CAS Google Scholar
  19. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
    Article CAS Google Scholar
  20. Leonhardt, H., Page, A.W., Weier, H.U. & Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei . Cell 71, 865–873 (1992).
    Article CAS Google Scholar
  21. Liu, Y., Oakeley, E.J., Sun, L. & Jost, J.P. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res. 26, 1038–1045 (1998).
    Article CAS Google Scholar
  22. Chuang, L.S. et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996– 2000 (1997).
    Article CAS Google Scholar
  23. Bestor, T.H. Activation of mammalian DNA methyltransferase by cleavage of a Zn-binding regulatory domain. EMBO J. 11, 2611– 2617 (1992).
    Article CAS Google Scholar
  24. Leonhardt, H. & Bestor, T.H. Structure, function and regulation of mammalian DNA methyltransferase. EXS 64, 109–119 (1993).
    CAS PubMed Google Scholar
  25. Hittelman, A.B., Burakov, D., Iniguez-Lluhi, J.A., Freedman, L.P. & Garabedian, M.J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins . EMBO J. 18, 5380–5388 (1999).
    Article CAS Google Scholar
  26. Sun, Z., Pan, J., Hope, W.X., Cohen, S.N. & Balk, S.P. Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer 86, 689–696 (1999).
    Article CAS Google Scholar
  27. Watanabe, M. et al. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochem. Biophys. Res. Commun. 245, 900–905 ( 1998).
    Article CAS Google Scholar
  28. Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet. 24, 88–91 (2000).
    Article CAS Google Scholar
  29. Yoder, J.A., Yen, R.W.C., Vertino, P.M., Bestor, T.H. & Baylin, S.B. New 5′ regions of the murine and human genes for DNA (cytosine-5)-methyltransferase. J. Biol. Chem. 271, 31092–31097 ( 1996).
    Article CAS Google Scholar
  30. Tucker, K.L., Talbot, D., Lee, M.A., Leonhardt, H. & Jaenisch, R. Complementation of methylation deficiency in embryonic stem cells by a DNA methyltransferase minigene. Proc. Natl Acad. Sci. USA 93, 12920–12925 (1996).
    Article CAS Google Scholar
  31. Li, L. & Cohen, S.N. TSG101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319– 329 (1996).
    Article CAS Google Scholar
  32. O'Keefe, R.T., Henderson, S.C. & Spector, D.L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific α-satellite DNA sequences. J. Cell Biol. 116, 1095– 1110 (1992).
    Article CAS Google Scholar
  33. Krude, T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp. Cell Res. 247, 148–159 (1999).
    Article CAS Google Scholar
  34. Wu, J. et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl Acad. Sci. USA 90, 8891–8895 ( 1993).
    Article CAS Google Scholar
  35. Bakin, A.V. & Curran, T. Role of DNA 5-methylcytosinetransferase in cell transformation by fos. Science 283, 387–390 (1999).
    Article CAS Google Scholar
  36. Vertino, P.M., Yen, R.W., Gao, J. & Baylin, S.B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase . Mol. Cell. Biol. 16, 4555– 4565 (1996).
    Article CAS Google Scholar
  37. Gaudet, F., Talbot, D., Leonhardt, H. & Jaenisch, R. A short DNA methyltransferase isoform restores methylation in vivo. J. Biol. Chem. 273, 32725–32729 (1998).
    Article CAS Google Scholar
  38. Mertineit, C. et al. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125, 889– 897 (1998).
    CAS PubMed Google Scholar
  39. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 ( 1999).
    Article CAS Google Scholar
  40. Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166 (1999).
    Article CAS Google Scholar
  41. Rein, T., Kobayashi, T., Malott, M., Leffak, M. & DePamphilis, M.L. DNA methylation at mammalian replication origins. J. Biol. Chem. 274, 25792–25800 (1999).
    Article CAS Google Scholar
  42. Collingwood, T.N., Urnov, F.D. & Wolffe, A.P. Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23, 255–275 ( 1999).
    Article CAS Google Scholar
  43. Zhong, Q., Chen, Y., Jones, D. & Lee, W.H. Perturbation of TSG101 protein affects cell cycle progression. Cancer Res. 58, 2699–2702 (1998).
    CAS PubMed Google Scholar
  44. Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T. & Allis, C.D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 ( 1995).
    Article CAS Google Scholar
  45. Annunziato, A.T. & Seale, R.L. Histone deacetylation is required for the maturation of newly replicated chromatin. J. Biol. Chem. 258, 12675–12684 (1983).
    CAS PubMed Google Scholar
  46. Li, E. The mojo of methylation. Nature Genet. 23, 5 –6 (1999).
    Article Google Scholar
  47. Hsieh, J.J., Zhou, S., Chen, L., Young, D.B. & Hayward, S.D. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 23–28 ( 1999).
    Article CAS Google Scholar
  48. Bar-Peled, M. & Raikhel, N.V. A method for isolation and purification of specific antibodies to a protein fused to the GST. Anal. Biochem. 241, 140–142 ( 1996).
    Article CAS Google Scholar

Download references