Cellular and network mechanisms of rhythmic recurrent activity in neocortex (original) (raw)

References

  1. Steriade, M., McCormick, D. A. & Sejnowski, T. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).
    Article CAS Google Scholar
  2. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).
    Article CAS Google Scholar
  3. Steriade, M., Contreras, D., Curro Dossi, R. & Nunez, A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 3266–3283 (1993).
    Article CAS Google Scholar
  4. Steriade, M., Nunez, A. & Amzica, F. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms in the electroencephalogram. J. Neurosci. 13, 3266–3283 (1993).
    Article CAS Google Scholar
  5. Contreras, D., Timofeev, I. & Steriade, M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. (Lond.) 494, 251–264 (1996).
    Article CAS Google Scholar
  6. Metherate, R. & Ashe, J. H. Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. J. Neurosci. 13, 5312–5323 (1993).
    Article CAS Google Scholar
  7. Lampl, I., Reichova, I. & Ferster, D. Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22, 361–374 (1999).
    Article CAS Google Scholar
  8. Stern, E. A., Kincaid, A. E. & Wilson, C. J. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77, 1697–1715 (1997).
    Article CAS Google Scholar
  9. Achermann, P. & Borbely, A. A. Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222 (1997).
    Article CAS Google Scholar
  10. von Krosigk, M., Bal, T. & McCormick, D. A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993).
    Article CAS Google Scholar
  11. Steriade, M. & Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J. Neurosci. 15, 623–642 (1995).
    Article CAS Google Scholar
  12. Yamaguchi, T. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil. Bull. Tokyo Med. Dent. Univ. 33, 1–8 (1986).
    CAS PubMed Google Scholar
  13. Zhang, E. T., Hansen, A. J., Wieloch, T. & Lauritzen, M. Influence of MK-801 on brain extracellular calcium and potassium activities in severe hypoglycemia. J. Cereb. Blood Flow Metab. 10, 136–139 (1990).
    Article CAS Google Scholar
  14. Connors, B. W. Initiation of synchronized neuronal bursting in neocortex. Nature 310, 685–687 (1984).
    Article CAS Google Scholar
  15. Telfeian, A. E. & Connors, B. W. Epileptiform propagation patterns mediated by NMDA and non-NMDA receptors in rat neocortex. Epilepsia 40, 1499–1506 (1999).
    Article CAS Google Scholar
  16. Avoli, M., Drapeau, C., Louvel, J., Olivier, A. & Villemure, J. G. Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Ann. Neurol. 30, 589–596 (1991).
    Article CAS Google Scholar
  17. Chagnac-Amitai, Y. & Connors, B. W. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J. Neurophysiol. 61, 747–758 (1989).
    Article CAS Google Scholar
  18. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).
    Article CAS Google Scholar
  19. Raman, I. M. & Bean, B. P. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19, 1663–1674 (1999).
    Article CAS Google Scholar
  20. Haj-Dahmane, S. & Andrade, R. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80, 1197–1210 (1998).
    Article CAS Google Scholar
  21. Wang, X.-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).
    Article CAS Google Scholar
  22. Nowak, L. G. & Bullier, J. in Cerebral Cortex: Extrastriate Cortex in Primates Vol. 12 (eds. Rockland, K., Kaas, J. H. & Peters, A.) 205–241 (Plenum, New York 1997).
    Book Google Scholar
  23. Amzica, F. & Steriade, M. Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. J. Neurophysiol. 73, 20–38 (1995).
    Article CAS Google Scholar
  24. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999).
    Article CAS Google Scholar
  25. Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Cellular mechanisms of long lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20, 4286–4299 (2000).
    Article CAS Google Scholar
  26. Schwindt, P. C., Spain, W. J. & Crill, W. E. Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortex neurons. J. Neurophysiol. 61, 233–244 (1989).
    Article CAS Google Scholar
  27. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).
    Article CAS Google Scholar
  28. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical cells. J. Neurosci. 15, 5449–5465 (1995).
    Article Google Scholar
  29. Staley, K. J., Longacher, M., Bains, J. S. & Yee, A. Presynaptic modulation of CA3 network activity. Nat. Neurosci. 1, 201–209 (1998).
    Article CAS Google Scholar
  30. Foehring, R. C., Schwindt, P. C. & Crill, W. E. Norepinephrine selectively reduces slow Ca2+- and Na+- mediated K+ currents in cat neocortical neurons. J. Neurophysiol. 61, 245–256 (1989).
    Article CAS Google Scholar
  31. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
    Article CAS Google Scholar
  32. Steriade, M., Amzica, F. & Nunez, A. Cholinergic and noradrenergic modulation of slow (approximately 0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400 (1993).
    Article CAS Google Scholar
  33. Lewandowski, M. H., Muller, C. M. & Singer, W. Reticular facilitation of cat visual cortical responses is mediated by nicotinic and muscarinic cholinergic mechanisms. Exp. Brain Res. 96, 1–7 (1993).
    Article CAS Google Scholar
  34. Anderson, J., Lampl, I., Reichova, I., Carandini, M. & Ferster, D. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nat. Neurosci. 3, 617–621 (2000).
    Article CAS Google Scholar
  35. Phillis, J. W. Acetylcholine release from the cerebral cortex: its role in cortical arousal. Brain Res. 7, 378–389 (1968).
    Article CAS Google Scholar
  36. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).
    Article CAS Google Scholar
  37. Mountcastle, V. B., Motter, B. C., Steinmetz, M. A. & Sestokas, A. K. Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. J. Neurosci. 7, 2239–2255 (1987).
    Article CAS Google Scholar
  38. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).
    Article CAS Google Scholar
  39. Hebb, D. O. The Organization of Behavior (John Wiley, New York, 1949).
    Google Scholar
  40. Lorente de No, R. Analysis of the activity of the chains of internuncial neurons. J. Neurophysiol. 1, 207–244 (1938).
    Article Google Scholar
  41. Snodderly, D. M. & Gur, M. Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): Ongoing activity, stimulus selectivity, and widths of receptive field activating regions. J. Neurophysiol. 74, 2100–2125 (1995).
    Article CAS Google Scholar
  42. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).
    Article CAS Google Scholar
  43. Reid, R. C. & Alonso, J. M. The processing and encoding of information in the visual cortex. Curr. Opin. Neurobiol. 6, 475–480 (1996).
    Article CAS Google Scholar
  44. Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).
    Article CAS Google Scholar

Download references