Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015) (original) (raw)
References
Fearon, E.R., Hamilton, S.R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science238, 193–197 (1987). ArticleCAS Google Scholar
Chang, F., Syrjanen, S. & Syrjanen, K. Implications of the p53 tumor-suppressor gene in clinical oncology. J. Clin. Oncol.13, 1009–1022 (1995). ArticleCAS Google Scholar
Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science266, 807–810 (1994). ArticleCAS Google Scholar
Bergh, J., Norberg, T., Sjogren, S., Lindgren, A. & Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med.1, 1029–1034 (1995). ArticleCAS Google Scholar
Barker, D.D. & Berk, A.J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology156, 107–121 (1987). ArticleCAS Google Scholar
Ganly, I. et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res.6, 798–806 (2000). CASPubMed Google Scholar
Khuri, F.R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med.6, 879–885 (2000). ArticleCAS Google Scholar
Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med.3, 639–645 (1997). ArticleCAS Google Scholar
Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science274, 373–376 (1996). ArticleCAS Google Scholar
Goodrum, F.D. & Ornelles, D.A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol.72, 9479–9490 (1998). CASPubMedPubMed Central Google Scholar
Turnell, A.S., Grand, R.J. & Gallimore, P.H. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J. Virol.73, 2074–2083 (1999). CASPubMedPubMed Central Google Scholar
Rothmann, T., Hengstermann, A., Whitaker, N.J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol.72, 9470–9478 (1998). CASPubMedPubMed Central Google Scholar
Harada, J.N. & Berk, A.J. p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol.73, 5333–5344 (1999). CASPubMedPubMed Central Google Scholar
Piette, J., Neel, H. & Marechal, V. Mdm2: keeping p53 under control. Oncogene15, 1001–1010 (1997). ArticleCAS Google Scholar
Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA95, 8292–8297 (1998). ArticleCAS Google Scholar
Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell92, 713–723 (1998). ArticleCAS Google Scholar
Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res.55, 5187–5190 (1995). CASPubMed Google Scholar
Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science282, 1497–1501 (1998). ArticleCAS Google Scholar
Di Leonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev.8, 2540–2551 (1994). ArticleCAS Google Scholar
Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J.12, 461–468 (1993). ArticleCAS Google Scholar
Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J.17, 5001–5014 (1998). ArticleCAS Google Scholar
Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature395, 124–125 (1998). ArticleCAS Google Scholar
de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev.12, 2434–2442 (1998). ArticleCAS Google Scholar
Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol.1, 20–26 (1999). ArticleCAS Google Scholar
Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell3, 579–591 (1999). ArticleCAS Google Scholar
Brown, R. et al. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer55, 678–684 (1993). ArticleCAS Google Scholar
Steegenga, W.T., Riteco, N. & Bos, J.L. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells. Oncogene18, 5032–5043 (1999). ArticleCAS Google Scholar
Billon, N., van Grunsven, L.A. & Rudkin, B.B. The CDK inhibitor p21WAF1/Cip1 is induced through a p300-dependent mechanism during NGF-mediated neuronal differentiation of PC12 cells. Oncogene13, 2047–2054 (1996). CASPubMed Google Scholar
Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T. & Levine, A.J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J.17, 554–564 (1998). ArticleCAS Google Scholar
Dobner, T., Horikoshi, N., Rubenwolf, S. & Shenk, T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science272, 1470–1473 (1996). ArticleCAS Google Scholar
Tao, W. & Levine, A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA96, 6937–6941 (1999). ArticleCAS Google Scholar
Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev.13, 2670–2677 (1999). ArticleCAS Google Scholar
Hall, A.R., Dix, B.R., O'Carroll, S.J. & Braithwaite, A.W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nature Med.4, 1068–1072 (1998). ArticleCAS Google Scholar
Babiss, L.E., Ginsberg, H.S. & Darnell, J.E., Jr. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol.5, 2552–2558 (1985). ArticleCAS Google Scholar