Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015) (original) (raw)

References

  1. Fearon, E.R., Hamilton, S.R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).
    Article CAS Google Scholar
  2. Chang, F., Syrjanen, S. & Syrjanen, K. Implications of the p53 tumor-suppressor gene in clinical oncology. J. Clin. Oncol. 13, 1009–1022 (1995).
    Article CAS Google Scholar
  3. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).
    Article CAS Google Scholar
  4. Bergh, J., Norberg, T., Sjogren, S., Lindgren, A. & Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med. 1, 1029–1034 (1995).
    Article CAS Google Scholar
  5. Barker, D.D. & Berk, A.J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121 (1987).
    Article CAS Google Scholar
  6. Ganly, I. et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res. 6, 798–806 (2000).
    CAS PubMed Google Scholar
  7. Khuri, F.R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).
    Article CAS Google Scholar
  8. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639–645 (1997).
    Article CAS Google Scholar
  9. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).
    Article CAS Google Scholar
  10. Goodrum, F.D. & Ornelles, D.A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490 (1998).
    CAS PubMed PubMed Central Google Scholar
  11. Turnell, A.S., Grand, R.J. & Gallimore, P.H. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J. Virol. 73, 2074–2083 (1999).
    CAS PubMed PubMed Central Google Scholar
  12. Rothmann, T., Hengstermann, A., Whitaker, N.J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol. 72, 9470–9478 (1998).
    CAS PubMed PubMed Central Google Scholar
  13. Harada, J.N. & Berk, A.J. p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol. 73, 5333–5344 (1999).
    CAS PubMed PubMed Central Google Scholar
  14. Piette, J., Neel, H. & Marechal, V. Mdm2: keeping p53 under control. Oncogene 15, 1001–1010 (1997).
    Article CAS Google Scholar
  15. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).
    Article CAS Google Scholar
  16. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).
    Article CAS Google Scholar
  17. Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).
    CAS PubMed Google Scholar
  18. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).
    Article CAS Google Scholar
  19. Di Leonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).
    Article CAS Google Scholar
  20. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).
    Article CAS Google Scholar
  21. Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).
    Article CAS Google Scholar
  22. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).
    Article CAS Google Scholar
  23. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).
    Article CAS Google Scholar
  24. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).
    Article CAS Google Scholar
  25. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).
    Article CAS Google Scholar
  26. Brown, R. et al. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer 55, 678–684 (1993).
    Article CAS Google Scholar
  27. Steegenga, W.T., Riteco, N. & Bos, J.L. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells. Oncogene 18, 5032–5043 (1999).
    Article CAS Google Scholar
  28. Billon, N., van Grunsven, L.A. & Rudkin, B.B. The CDK inhibitor p21WAF1/Cip1 is induced through a p300-dependent mechanism during NGF-mediated neuronal differentiation of PC12 cells. Oncogene 13, 2047–2054 (1996).
    CAS PubMed Google Scholar
  29. Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T. & Levine, A.J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).
    Article CAS Google Scholar
  30. Dobner, T., Horikoshi, N., Rubenwolf, S. & Shenk, T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272, 1470–1473 (1996).
    Article CAS Google Scholar
  31. Tao, W. & Levine, A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).
    Article CAS Google Scholar
  32. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).
    Article CAS Google Scholar
  33. Hall, A.R., Dix, B.R., O'Carroll, S.J. & Braithwaite, A.W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nature Med. 4, 1068–1072 (1998).
    Article CAS Google Scholar
  34. Babiss, L.E., Ginsberg, H.S. & Darnell, J.E., Jr. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol. 5, 2552–2558 (1985).
    Article CAS Google Scholar

Download references