Inhibitory control of neostriatal projection neurons by GABAergic interneurons (original) (raw)

References

  1. Bolam, J. P. & Bennett, B. D. in Molecular and Cellular Mechanisms of Neostriatal Function (eds. Marjorie, A., Ariano, M. A. & Surmeier, D. J.) 1–2 (Springer, Heidelberg, 1993).
    Google Scholar
  2. Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol. 12 Integrated Systems of the CNS (eds. Swanson, L. W., Björklund, A. & Hökfelt, T.) 371–468 (Elsevier Science B.V., Amsterdam, 1996).
    Google Scholar
  3. Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).
    Article CAS Google Scholar
  4. Wilson, C. J., Chang, H. T. & Kitai, S. T. Origins of post synaptic potentials evoked in spiny neostriatal projection neurons by thalamic stimulation in the rat. Exp. Brain Res. 51, 217–226 (1983).
    CAS PubMed Google Scholar
  5. Wilson, C. J. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S. F.) 141–171 (Academic, San Diego, 1992).
    Book Google Scholar
  6. Lighthall, J. W., Park, M. R. & Kitai, S. T. Inhibition in slices of rat neostriatum. Brain Res. 212, 182–187 (1981).
    Article CAS Google Scholar
  7. Lighthall, J. W. & Kitai, S. T. A short duration GABAergic inhibition in identified neostriatal medium spiny neurons: in vitro slice study. Brain Res. Bull. 11, 103–110 (1983).
    Article CAS Google Scholar
  8. Calabresi, P., Mercuri, N. B., Stefani, A. & Bernardi, G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J. Neurophysiol. 63, 651–662 (1990).
    Article CAS Google Scholar
  9. Kita, H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience 70, 925–940 ( 1996).
    Article CAS Google Scholar
  10. Nisenbaum, E. S. & Berger, T. W. Functionally distinct subpopulations of striatal neurons are differentially regulated by GABAergic and dopaminergic inputs—I. In vivo analysis. Neuroscience 48, 561–578 (1992).
    Article CAS Google Scholar
  11. Yoshida, M., Nagatsuka, Y., Muramatsu, S. & Niijima, K. Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists. Neurosci. Res. 10, 34–51 (1991).
    Article CAS Google Scholar
  12. Yamada, H., Fujimoto, K. & Yoshida, M. Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res. 677 , 333–336 (1995).
    Article CAS Google Scholar
  13. Wilson, C. J. & Groves, P. M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J. Comp. Neurol. 194, 599–615 (1980).
    Article CAS Google Scholar
  14. Jaeger, D., Kita, H. & Wilson, C. J. Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J. Neurophysiol. 72, 1–4 (1994).
    Article Google Scholar
  15. Kita, H. GABAergic circuits of the striatum. Prog. Brain Res. 99, 51–72 (1993).
    Article CAS Google Scholar
  16. Dodt, H. U. & Zieglgansberger, W. Visualizing unstained neurons in living brain slices by infrared DIC—videomicroscopy. Brain Res. 537, 333–336 (1990).
    Article CAS Google Scholar
  17. Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993).
    Article CAS Google Scholar
  18. Miles, R. & Poncer, J. C. Paired recordings from neurones. Curr. Opin. Neurobiol. 6, 387– 394 (1996).
    Article CAS Google Scholar
  19. Kita, T., Kita, H. & Kitai, S. T. Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res. 300, 129–139 (1984).
    Article CAS Google Scholar
  20. Kita, H., Kita, T. & Kitai, S. T. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp. Brain. Res. 60, 54–62 (1985).
    CAS PubMed Google Scholar
  21. Kawaguchi, Y., Wilson, C. J. & Emson, P. C. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 1052– 1068 (1989).
    Article CAS Google Scholar
  22. Nisenbaum, E. S., Xu, Z. C. & Wilson, C. J. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol. 71, 1174–1189 (1994).
    Article CAS Google Scholar
  23. Tepper, J. M. & Trent, F. In vivo studies of the postnatal development of rat neostriatal neurons. Prog. Brain Res. 99, 35–50 (1993).
    Article CAS Google Scholar
  24. Tepper, J. M., Sharpe, N. A., Koós, T. Z. & Trent, F. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev. Neurosci. 20 , 125–145 (1998).
    Article CAS Google Scholar
  25. Kawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527– 535 (1995).
    Article CAS Google Scholar
  26. Kita, H., Kosaka, T. & Heizmann, C. W. Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res. 536, 1–15 (1990).
    Article CAS Google Scholar
  27. Bennett, B. D. & Bolam, J. P. Synaptic input and output of parvalbumin immunoreactive neurons in the neostriatum of the rat. Neuroscience 62, 707– 719 (1994).
    Article CAS Google Scholar
  28. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex Cereb. Cortex 7, 476–486 (1997).
    Article CAS Google Scholar
  29. Wickens, J. R., Kötter, R. & Alexander, M. E. Effects of local connectivity on striatal function: stimulation and analysis of a model. Synapse 20, 281–298 (1995).
    Article CAS Google Scholar
  30. Groves, P. M. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res. 286, 109–132 (1983).
    Article CAS Google Scholar
  31. Rinzel, J., Terman, D., Wang, X. & Ermentrout, B. Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279, 1351–1355 ( 1998).
    Article CAS Google Scholar
  32. Whittington, M. A., Traub, R. D. & Jefferys, J. G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).
    Article CAS Google Scholar
  33. Parthasarathy, H. B. & Graybiel, A. M. Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the Squirrel monkey. J. Neurosci. 17, 2477–2491 (1997).
    Article CAS Google Scholar
  34. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).
    Article CAS Google Scholar
  35. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).
    Article CAS Google Scholar
  36. Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985– 988 (1998).
    Article CAS Google Scholar
  37. Lenz, S., Perney, T. M., Qin, Y., Robbins, E. & Chesselet, M. F. GABA-ergic interneurons of the striatum express the Shaw-like potassium channel, Kv3.1 Synapse 18, 55–66 (1994).
    Article CAS Google Scholar
  38. Nicola, S. M. & Malenka, R. C. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 17, 5697– 5710 (1997).
    Article CAS Google Scholar
  39. Pennartz, C. M. A., Dolleman-Van Der Weel, M. J., Kitai, S. T. & Da Silva, F. H. L. Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro . J. Neurophysiol. 67, 1325– 1334 (1992).
    Article CAS Google Scholar
  40. Chang, H. T. & Kita, H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res. 574, 307–311 ( 1992).
    Article CAS Google Scholar
  41. Bevan, M. D., Booth, P. A. C., Eaton, S. A. & Bolam, J. P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci. 18, 9438–9452 (1998).
    Article CAS Google Scholar
  42. Jiang, Z. G. & North, R. A. Membrane properties and synaptic responses of rat striatal neurones in vitro. J. Physiol. (Lond.) 443, 533–553 ( 1991).
    Article CAS Google Scholar
  43. Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods 51, 107–116 ( 1994).
    Article CAS Google Scholar
  44. Ng, B. & Barry, P. H. The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J. Neurosci. Methods 56, 37–41 (1995).
    Article CAS Google Scholar
  45. Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1– 11 (1988).
    Article CAS Google Scholar
  46. Oorschot, D. E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 366, 580–599 (1996).
    Article CAS Google Scholar
  47. Kincaid, A. E., Zheng, T. & Wilson, C. J. Connectivity and convergence of single corticostriatal axons. J. Neurosci. 18, 4722– 4731 (1998).
    Article CAS Google Scholar
  48. Plenz, D. & Kitai, S.T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18, 266–283 (1998).
    Article CAS Google Scholar

Download references