Computational principles of movement neuroscience (original) (raw)
Bellman, R. Dynamic Programming (Princeton Univ. Press, Princeton, New Jersey, 1957). Google Scholar
Shadmehr, R. & Mussa-Ivaldi, F. Adaptive representation of dynamics during learning of a motor task. J. Neurosci.14, 3208–3224 (1994). ArticleCAS Google Scholar
Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science269, 1880–1882 ( 1995). ArticleCAS Google Scholar
Ghahramani, Z. & Wolpert, D. M. Modular decomposition in visuomotor learning. Nature386, 392– 395 (1997). ArticleCAS Google Scholar
Gomi, H. & Kawato, M. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science272, 117–120 ( 1996). ArticleCAS Google Scholar
Cohn, J. V., DiZio, P. & Lackner, J. R. Reaching during virtual rotation: context specific compensations for expected coriolis forces. J. Neurophysiol.83, 3230–3240 (2000). ArticleCAS Google Scholar
Flash, T. & Hogan, N. The co-ordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci.5, 1688–1703 (1985). ArticleCAS Google Scholar
Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectories in human multijoint arm movements: Minimum torque-change model. Biol. Cybern.61, 89–101 ( 1989). ArticleCAS Google Scholar
Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature394, 780– 784 (1998). ArticleCAS Google Scholar
Kitazawa, S., Kimura, T. & Yin, P. Cerebellar complex spikes encode both destinations and errors in arm movements . Nature392, 494–497 (1998). ArticleCAS Google Scholar
Feldman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. III. Mechanographic analysis of execution by arm of the simplest motor tasks. Biophysics11, 766 –775 (1966). Google Scholar
Bizzi, E., Accornerro, N., Chapple, B. & Hogan, N. Posture control and trajectory formation during arm movement. J. Neurosci.4, 2738–2744 (1984). ArticleCAS Google Scholar
Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci.4, 2745–2754 ( 1984). ArticleCAS Google Scholar
Flash, T. The control of hand equilibrium trajectories in multi-joint arm movements . Biol. Cybern.57, 257– 274 (1987). ArticleCAS Google Scholar
Kawato, M., Furawaka, K. & Suzuki, R. A hierarchical neural network model for the control and learning of voluntary movements. Biol. Cybern.56, 1–17 (1987). Article Google Scholar
Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. Convergent force fields organized in the frog's spinal cord. J. Neurosci.13, 467– 491 (1993). ArticleCAS Google Scholar
Tresch, M. C., Saltiel, P. & Bizzi, E. The construction of movement by the spinal cord. Nat. Neurosci.2, 162–167 (1999). ArticleCAS Google Scholar
Mussa-Ivaldi, F. A. Modular features of motor control and learning. Curr. Opin. Neurobiol.9, 713–717 ( 1999). ArticleCAS Google Scholar
Mussa-Ivaldi, F. A. Do neurons in the motor cortex encode movement direction? An alternative hypothesis . Neurosci. Lett.91, 106– 111 (1988). ArticleCAS Google Scholar
Sanger, T. Theoretical considerations for the analysis of population coding in motor cortex. Neural Comput.6, 29– 37 (1994). Article Google Scholar
Georgopoulos, A. P. Current issues in directional motor control. Trends Neurosci.18, 506–510 (1995). ArticleCAS Google Scholar
Scott, S. & Kalaska, J. F. Motor cortical activity is altered by changes in arm posture for identical hand trajectories. J. Neurophysiol.73, 2563–2567 ( 1995). ArticleCAS Google Scholar
Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science285, 2136– 2139 (1999). ArticleCAS Google Scholar
Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci.3, 391– 398 (2000). ArticleCAS Google Scholar
Goodwin, G. C. & Sin, K. S. Adaptive Filtering Prediction and Control (Prentice-Hall, Englewood Cliffs, New Jersey, 1984). Google Scholar
van Beers, R. J., Sittig, A. C. & van der Gon, J. J. D. Integration of proprioceptive and visual position-information: An experimentally supported model. J. Neurophysiol.81, 1355–1364 (1999). ArticleCAS Google Scholar
Kuo, A. D. An optimal-control model for analyzing human postural balance. IEEE Trans. Biomed. Eng.42, 87–101 (1995). ArticleCAS Google Scholar
Merfeld, D. M., Zupan, L. & Peterka, R. J. Humans use internal model to estimate gravity and linear acceleration. Nature398, 615– 618 (1999). ArticleCAS Google Scholar
Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the superior parietal lobe. Nat. Neurosci.1, 529–533 (1998). ArticleCAS Google Scholar
Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Networks9, 1265– 1279 (1996). Article Google Scholar
Johansson, R. S. & Cole, K. J. Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol.2, 815–823 ( 1992). ArticleCAS Google Scholar
Sirigu, A. et al. The mental representation of hand movements after parietal cortex damage. Science273, 1564– 1568 (1996). ArticleCAS Google Scholar
Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature387, 278–281 ( 1997). ArticleCAS Google Scholar
Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science255, 90–92 (1992). ArticleCAS Google Scholar
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. Perceptual modulation of self-produced stimuli: The role of spatio-temporal prediction. J. Cogn. Neurosci.11, 551–559 (1999). ArticleCAS Google Scholar
Frith, C. D. The Cognitive Neuropsychology of Schizophrenia (Lawrenece Erlbaum, Hove, UK, 1992). Google Scholar
Sirigu, A., Daprati, E., Pradatdiehl, P., Franck, N. & Jeannerod, M. Perception of self-generated movement following left parietal lesion. Brain122, 1867–1874 (1999). Article Google Scholar
Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Networks11, 1317–1329 (1998). ArticleCAS Google Scholar
Eskandar, E. N. & Assad, J. A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance . Nat. Neurosci.2, 88– 93 (1999). ArticleCAS Google Scholar
Kim, J. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci.2, 176–185 ( 1999). Article Google Scholar
Kawato, M. & Gomi, H. The cerebellum and VOR/OKR learning models. Trends Neurosci.15, 445– 453 (1992). ArticleCAS Google Scholar
Shidara, M., Kawano, K., Gomi, H. & Kawato, M. Inverse-dynamics encoding of eye movement by Purkinje cells in the cerebellum. Nature365, 50–52 ( 1993). ArticleCAS Google Scholar
Lackner, J. R. & DiZio, P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J. Neurophysiol.72, 299–313 ( 1994). ArticleCAS Google Scholar
Conditt, M. A., Gandolfo, F. & Mussa-Ivaldi, F. A. The motor system does not learn dynamics of the arm by rote memorization of past experience. J. Neurophysiol.78, 554–560 (1997). ArticleCAS Google Scholar
Conditt, M. A. & Mussa-Ivaldi, F. A. Central representation of time during motor learning. Proc. Natl. Acad. Sci. USA96, 11625–11630 (1999). ArticleCAS Google Scholar
Bhushan, N. & Shadmehr, R. Computational nature of human adaptive control during learning of reaching movements in force fields. Biol. Cybern.81, 39–60 (1999). ArticleCAS Google Scholar
Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature382, 252–255 ( 1996). ArticleCAS Google Scholar
Gandolfo, F., Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning by field approximation. Proc. Natl. Acad. Sci. USA93, 3843–3846 (1996). ArticleCAS Google Scholar
Krakauer, J. W., Ghilardi, M. F. & Ghez, C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat. Neurosci.2, 1026–1031 (1999). ArticleCAS Google Scholar
Flanagan, J. R. et al. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J. Neurosci.19, B1–B5 ( 1999). Article Google Scholar