Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines (original) (raw)

References

  1. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).
    Article CAS PubMed Google Scholar
  2. Noel, P. J., Boise, L. H. & Thompson, C. B. Regulation of T cell activation by CD28 and CTLA4. Adv. Exp. Med. Biol. 406, 209–217 (1996).
    Article CAS PubMed Google Scholar
  3. Howland, K. C., Ausubel, L. J., London, C. A. & Abbas, A. K. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J. Immunol. 164, 4465–4470 (2000).
    Article CAS PubMed Google Scholar
  4. King, C. L., Xianli, J., June, C. H., Abe, R. & Lee, K. P. CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur. J. Immunol. 26, 2448–2455 (1996).
    Article CAS PubMed Google Scholar
  5. Villegas, E. N., Elloso, M. M., Reichmann, G., Peach, R. & Hunter, C. A. Role of CD28 in the generation of effector and memory responses required for resistance to Toxoplasma gondii. J. Immunol. 163, 3344–3353 (1999).
    CAS PubMed Google Scholar
  6. Dahl, A. M. et al. Expression of Bcl-XL restores cell survival, but not proliferation and effector differentiation, in CD28-deficient T lymphocytes. J. Exp. Med. 191, 2031–2038 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  7. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).
    CAS PubMed Google Scholar
  8. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).
    Article CAS PubMed Google Scholar
  9. Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).
    Article PubMed Google Scholar
  10. Ward, S. G. CD28: a signaling perspective. Biochem J. 318, 361–377 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  11. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).
    Article CAS PubMed Google Scholar
  12. Shapiro, V. S., Truitt, K. E., Imboden, J. B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell Biol. 17, 4051–4058 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  13. Hutchcroft, J. E. & Bierer, B. E. Signaling through CD28/CTLA-4 family receptors. J. Immunol. 156, 4071–4074 (1996).
    CAS PubMed Google Scholar
  14. June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. The B7 and CD28 receptor families. Immunol. Today 15, 321–331 (1994).
    Article CAS PubMed Google Scholar
  15. Crabtree, G. R. & Clipstone, N. A. Signal transduction between the plasma membrane and nuclues of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).
    Article CAS PubMed Google Scholar
  16. Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).
    Article CAS PubMed Google Scholar
  17. Civil, A., Geerts, M., Aarden, L. A. & Verweij, C. L. Evidence for a role of CD28RE as a response element for distinct mitogenic T cell activation signals. Eur. J. Immunol. 22, 3041–3043 (1992).
    Article CAS PubMed Google Scholar
  18. Fraser, J. D., Irving, B. A., Crabtree, G. R. & Weiss, A. Regulation of Interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251, 313–316 (1991).
    Article CAS PubMed Google Scholar
  19. McGuire, K. L. & Iacobelli, M. Involvement of Rel, Fos, and Jun proteins in binding activity to the IL-2 promoter CD28 element/AP-1 sequence in human T cells. J. Immunol. 159, 1319–1327 (1997).
    CAS PubMed Google Scholar
  20. Verweij, C. L., Geerts, M. & Aarden, L. A. Activation of interleukin-2 gene transcription via the T-cell surface molecule CD28 is mediated through an NF-κB-like response element. J. Biol. Chem. 266, 14179–14182 (1991).
    CAS PubMed Google Scholar
  21. Butscher, W. G., Powers, C., Olive, M., Vinson, C. & Gardner, K. Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J. Biol. Chem. 273, 552–560 (1998).
    Article CAS PubMed Google Scholar
  22. Curtiss, V. E., Smilde, R. & McGuire, K. L. Requirements for interleukin 2 promoter transactivation by the Tax protein of human T-cell leukemia virus type 1. Mol. Cell Biol. 16, 3567–3575 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  23. Fraser, J. D. & Weiss, A. Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28. Mol. Cell Biol. 12, 4357–4363 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  24. Cerdan, C. et al. Prolonged IL-2 receptor α/CD25 expression after T cell activation via the adhesion molecules CD2 and CD28. J. Immunol. 149, 2255–2261 (1992).
    CAS PubMed Google Scholar
  25. Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell- derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  26. Wechsler, A. S., Gordon, M. C., Dendorfer, U. & LeClair, K. P. Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J. Immunol. 153, 2515–2523 (1994).
    CAS PubMed Google Scholar
  27. Ghosh, P., Tan, T.-H., Rice, N. R., Sica, A. & Young, H. A. The interleukin 2 CD28-responsive complex contains at least three members of the NF-κB family: c-Rel, p50, and p65. Proc. Natl Acad. Sci. USA 90, 1696–1700 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  28. Maggirwar, S. B., Harhaj, E. W. & Sun, S.-C. Regulation of the interleukin-2 CD28-responsive element by NF-ATp and various NF-κB/Rel transcription factors. Mol. Cell Biol. 17, 2605–2614 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  29. Bryan, R. G. et al. Effect of CD28 signal transduction on c-Rel in human peripheral blood T cells. Mol. Cell Biol. 14, 7933–7942 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  30. Lai, J.-H. & Tan, T.-H. CD28 signaling causes a sustained down-regulation of IκBα which can be prevented by the immunosuppressant rapamycin. J. Biol. Chem. 269, 30077–30080 (1994).
    CAS PubMed Google Scholar
  31. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).
    Article CAS PubMed Google Scholar
  32. Parry, R. V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J. Immunol. 27, 2495–2501 (1997).
    Article CAS PubMed Google Scholar
  33. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).
    Article CAS PubMed Google Scholar
  34. Ueda, Y. et al. Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Int. Immunol. 7, 957–966 (1995).
    Article CAS PubMed Google Scholar
  35. Kane, L. P., Shapiro, V. S. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).
    Article CAS PubMed Google Scholar
  36. Jones, R. G. et al. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor κB Activation, and Bcl-X(L) Levels In vivo. J. Exp. Med. 191, 1721–1734 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  37. Eder, A. M., Dominguez, L., Franke, T. F. & Ashwell, J. D. Phosphoinositide 3-kinase regulation of T cell receptor-mediated interleukin-2 gene expression in normal T cells. J. Biol. Chem. 273, 28025–28031 (1998).
    Article CAS PubMed Google Scholar
  38. Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).
    CAS PubMed PubMed Central Google Scholar
  39. Manger, B., Weiss, A., Imboden, J., Laing, T. & Stobo, J. D. The role of protein kinase C in transmembrane signaling by the T cell antigen receptor complex. Effects of stimulation with soluble or immobilized CD3 antibodies. J. Immunol. 139, 2755–2760 (1987).
    CAS PubMed Google Scholar
  40. Weiss, A., Manger, B. & Imboden, J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J. Immunol. 137, 819–825 (1986).
    CAS PubMed Google Scholar
  41. Shapiro, V. S., Mollenauer, M. N. & Weiss, A. Nuclear factor of activated T cells and AP-1 are insufficient for IL-2 promoter activation: requirement for CD28 up-regulation of RE/AP. J. Immunol. 161, 6455–6458 (1998).
    CAS PubMed Google Scholar
  42. Fraser, J. D., Newton, M. E. & Weiss, A. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J. Exp. Med. 175, 1131–1134 (1992).
    Article CAS PubMed Google Scholar
  43. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  44. Lin, X., O'Mahony, A., Mu, Y., Geleziunas, R. & Greene, W. C. Protein kinase C-θ participates in NF-κB activation induced by CD3-CD28 costimulation through selective activation of IκB kinase β. Mol. Cell Biol. 20, 2933–2940 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  45. Coudronniere, N., Villalba, M., Englund, N. & Altman, A. NF-κ B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-θ. Proc. Natl Acad. Sci. USA 97, 3394–3399 (2000).
    CAS PubMed PubMed Central Google Scholar
  46. Monks, C. R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).
    Article CAS PubMed Google Scholar
  47. Wilkinson, S. E., Parker, P. J. & Nixon, J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem. J. 294, 335–337 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  48. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).
    Article CAS PubMed Google Scholar
  49. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).
    Article CAS PubMed Google Scholar
  50. Khattri, R., Auger, J. A., Griffin, M. D., Sharpe, A. H. & Bluestone, J. A. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).
    CAS PubMed Google Scholar
  51. Kubo, M. et al. CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4- mediated Th2 differentiation. J. Immunol. 163, 2432–2442 (1999).
    CAS PubMed Google Scholar
  52. Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158, 658–665 (1997).
    CAS PubMed Google Scholar
  53. Ronchese, F., Hausmann, B., Hubele, S. & Lane, P. Mice transgenic for a soluble form of murine CTLA-4 show enhanced expansion of antigen-specific CD4+ T cells and defective antibody production in vivo. J. Exp. Med. 179, 809–817 (1994).
    Article CAS PubMed Google Scholar
  54. Lenschow, D. J. et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293 (1996).
    Article CAS PubMed Google Scholar
  55. Peterson, R. T. & Schreiber, S. L. Kinase phosphorylation: Keeping it all in the family. Curr. Biol. 9, R521–524 (1999).
    Article CAS PubMed Google Scholar
  56. Li-Weber, M., Giasi, M. & Krammer, P. H. Involvement of Jun and Rel proteins in up-regulation of interleukin-4 gene activity by the T cell accessory molecule CD28. J. Biol. Chem. 273, 32460–32466 (1998).
    Article CAS PubMed Google Scholar
  57. Stack, R. M., Thompson, C. B. & Fitch, F. W. IL-4 enhances long-term survival of CD28-deficient T cells. J. Immunol. 160, 2255–2262 (1998).
    CAS PubMed Google Scholar
  58. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965–1014 (1999).
    Article CAS PubMed Google Scholar
  59. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  60. Ott, M. et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275, 1481–1485 (1997).
    Article CAS PubMed Google Scholar
  61. Borgatti, P. et al. Extracellular HIV-1 Tat protein activates phosphatidylinositol 3- and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells. Eur J. Immunol. 27, 2805–2811 (1997).
    Article CAS PubMed Google Scholar
  62. Reif, K., Lucas, S. & Cantrell, D. A negative role for phosphoinositide 3-kinase in T-cell antigen receptor function. Curr. Biol. 7, 285–293 (1997).
    Article CAS PubMed Google Scholar
  63. Crooks, M. E. et al. CD28-mediated costimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol. Cell Biol. 15, 6820–6828 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  64. Ward, S. G., Wilson, A., Turner, L., Westwick, J. & Sansom, D. M. Inhibition of CD28-mediated T cell costimulation by the phosphoinositide 3-kinase inhibitor wortmannin. Eur. J. Immunol. 25, 526–532 (1995).
    Article CAS PubMed Google Scholar
  65. Ward, S. G., June, C. H. & Olive, D. PI 3-kinase: a pivotal pathway in T-cell activation? Immunol. Today 17, 187–197 (1996).
    Article CAS PubMed Google Scholar
  66. Shan, X. et al. Deficiency of PTEN in jurkat T cells causes constitutive localization of itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell Biol. 20, 6945–6957 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  67. Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell Biol. 20, 2556–2568 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  68. Lin, X., Cunningham, E. T., Mu, Y., Geleziunas, R. & Greene, W. C. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10, 271–280 (1999).
    Article PubMed Google Scholar
  69. Tsatsanis, C., Patriotis, C. & Tsichlis, P. N. Tpl-2 induces IL-2 expression in T-cell lines by triggering multiple signaling pathways that activate NFAT and NF-κB. Oncogene 17, 2609–2618 (1998).
    Article CAS PubMed Google Scholar
  70. Tuosto, L. et al. Mitogen-activated kinase kinase kinase 1 regulates T cell receptor-and CD28-mediated signaling events which lead to NF-κB activation. Eur. J. Immunol. 30, 2445–2454 (2000).
    Article CAS PubMed Google Scholar
  71. Tsatsanis, C., Patriotis, C., Bear, S. E. & Tsichlis, P. N. The Tpl-2 protooncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc. Natl Acad. Sci. USA 95, 3827–3832 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  72. Ballester, A., Tobena, R., Lisbona, C., Calvo, V. & Alemany, S. Cot kinase regulation of IL-2 production in Jurkat T cells. J. Immunol. 159, 1613–1618 (1997).
    CAS PubMed Google Scholar
  73. Durand, D. B., Bush, M. R., Morgan, J. G., Weiss, A. & Crabtree, G. R. A 275 basepair fragment at the 5′ end of the interleukin 2 gene enhances expression from a heterologous promoter in response to signals from the T cell antigen receptor. J. Exp. Med. 165, 395–407 (1987).
    Article CAS PubMed Google Scholar
  74. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).
    Article CAS PubMed Google Scholar
  75. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).
    CAS PubMed PubMed Central Google Scholar

Download references