The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling (original) (raw)

References

  1. Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634 (1988).
    Article CAS Google Scholar
  2. Lee, J.M., Zipfel, G.J. & Choi, D.W. The changing landscape of ischemic brain injury mechanisms. Nature 399, 7–14 (1999).
    Article Google Scholar
  3. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue-plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).
  4. Lijnen, H.R., Hoylaerts, M. & Collen, D. Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein. J. Biol. Chem. 255, 10214–10222 (1980).
    CAS PubMed Google Scholar
  5. Sappino, A.P. et al. Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679–685 (1993).
    Article CAS Google Scholar
  6. Baranes, D. et al. Tissue-plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825 (1998).
    Article CAS Google Scholar
  7. Friedman, G.C. & Seeds, N.W. Tissue-plasminogen activator expression in the embryonic nervous system. Brain Res. Dev. 81, 41–49 (1994).
    Article CAS Google Scholar
  8. Tsirka, S.E., Gualandris, A., Amaral, D.G. & Strickland, S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue-plasminogen activator. Nature 377, 340–344 (1995).
    Article CAS Google Scholar
  9. Wang, Y.F. et al. Tissue-plasminogen activator (t-PA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nature Med. 4, 228–231 (1998).
    Article CAS Google Scholar
  10. Kirkegaard, T. et al. Engineering of conformations of plasminogen activator inhibitor-1. A crucial role of β-strand 5A residues in the transition of active form to latent and substrate forms. Eur. J. Biochem. 263, 577–586 (1999).
    Article CAS Google Scholar
  11. Gualandris, A., Jones, T.E., Strickland, S. & Tsirka, S.E. Membrane depolarization induces calcium-dependent secretion of tissue-plasminogen activator. J. Neurosci. 16, 2220–2225 (1996).
    Article CAS Google Scholar
  12. Verderio, C. et al. Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J. Neurosci. 19, 6723–6732 (1999).
    Article CAS Google Scholar
  13. Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419–424 (1994).
    Article CAS Google Scholar
  14. Nowack, L., Bregestovki, P. Ascher, P, Herbet. A & Prochaintz,A. Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465 (1984).
    Article Google Scholar
  15. Sattler, R., Charlton, M.P., Hafner, M. & Tymiansky, M. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J. Neurochem. 71, 2349–2364 (1998).
    Article CAS Google Scholar
  16. Mori, H. & Mishina, M. Structure and function of the NMDA receptor channel. Neuropharmacology 34, 1219–1237 (1995).
    Article CAS Google Scholar
  17. Carmeliet, P. & Collen, D. Molecular analysis of blood vessel formation and disease. Am. J. Physiol. 273, H2091–H2104 (1997).
    CAS PubMed Google Scholar
  18. Kim, Y.H., Park, J.H., Hong, S.H. & Koh, J.Y. Nonproteolytic neuroprotection by human recombinant tissue-plasminogen activator. Science 284, 647–650 (1999).
    Article CAS Google Scholar
  19. Rogove, A.D. & Tsirka, S.E. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr. Biol. 8, 19–25 (1998).
    Article CAS Google Scholar
  20. Parmer, R.J. et al. Tissue-plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J. Biol. Chem. 272, 976–982 (1997).
    Article Google Scholar
  21. Gils, A. & Declerck, J.P. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J. Biol. Chem. 272, 12662–12666 (1997).
    Article CAS Google Scholar
  22. Ding, L. et al. Origins of the specificity of tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 15, 7627–7631 (1995).
    Article Google Scholar
  23. Hirai, H., Kirsch, J., Laube, B., Betz, H. & Kuhse, J. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc. Natl. Acad. Sci. USA 11, 6031–6036 (1996).
    Article Google Scholar
  24. Rose, K., Goldberg, M.P. & Choi, D.W. Cytotoxicity in murine cortical cell culture. in In Vitro Biological Methods (Tyson C.A. & Frazier J.M., eds), 46–60 (Academic Press, San Diego, California, 1993).
    Chapter Google Scholar
  25. Buisson, A. et al. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. FASEB J. 12, 1683–1691 (1998).
    Article CAS Google Scholar
  26. Koh, J.Y. & Choi, D.W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 20, 83–90 (1987).
    Article CAS Google Scholar
  27. Paxinos, G. & Watson, C. The rat brain stereotaxic coordinates. (Academic Press, Australia, 1982).
    Google Scholar

Download references