High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection (original) (raw)

References

  1. Fliss, M.S. et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017–2019 (2000).
    Article CAS Google Scholar
  2. Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20, 291–293 (1998).
    Article CAS Google Scholar
  3. Alonso, A. et al. Detection of somatic mutations in the mitochondrial DNA control region of colorectal and gastric tumors by heteroduplex and single-strand conformation analysis. Electrophoresis 18, 682–685 (1997).
    Article CAS Google Scholar
  4. Richard, S.M. et al. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 60, 4231–4237 (2000).
    CAS PubMed Google Scholar
  5. Habano, W., Nakamura, S. & Sugai, T. Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: Evidence for mismatch repair systems in mitochondrial genome. Oncogene 17, 1931–1937 (1998).
    Article CAS Google Scholar
  6. Habano, W. et al. Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology 118, 835–841 (2000).
    Article CAS Google Scholar
  7. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
    Article CAS Google Scholar
  8. Shay, J.W. & Werbin, H. Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat. Res. 186, 149–160 (1987).
    Article CAS Google Scholar
  9. Avise, J.C. et al. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst . 18, 489–522 (1987).
    Article Google Scholar
  10. Monnat, R.J. Jr. & Loeb, L.A. Nucleotide sequence preservation of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 82, 2895–2899 (1985).
    Article CAS Google Scholar
  11. Bodenteich, A., Mitchell, L.G. & Merril, C.R. A lifetime of retinal light exposure does not appear to increase mitochondrial mutations. Gene 108, 305–309 (1991).
    Article CAS Google Scholar
  12. Coller, H.A. et al. Mutational spectra of a 100-base pair mitochondrial DNA target sequence in bronchial epithelial cells: a comparison of smoking and nonsmoking twins. Cancer Res. 58, 1268–1277 (1998).
    CAS PubMed Google Scholar
  13. Pallotti, F., Chen, X., Bonilla, E. & Schon, E.A. Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging. Am. J. Hum. Genet. 59, 591–602 (1996).
    CAS PubMed PubMed Central Google Scholar
  14. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).
    Article CAS Google Scholar
  15. Heerdt, B.G., Chen, J., Stewart, L.R. & Augenlicht, L.H. Polymorphisms, but lack of mutations or instability, in the promotor region of the mitochondrial genome in human colonic tumors. Cancer Res . 54, 3912–3915 (1994).
    CAS Google Scholar
  16. Shay, J.W. & Ishii, S. Unexpected nonrandom mitochondrial DNA segregation in human cell hybrids. Anticancer Res. 10, 279–284 (1990).
    CAS PubMed Google Scholar
  17. Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O. & Attardi, G. Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc. Natl Acad. Sci. USA 89, 11164–11168 (1992).
    Article CAS Google Scholar
  18. Dunbar, D.R., Moonie, P.A., Jacobs, H.T. & Holt, I.J. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc. Natl Acad. Sci. USA 92, 6562–6566 (1995).
    Article CAS Google Scholar
  19. Herrero-Jimenez, P. et al. Mutation, cell kinetics, and subpopulations at risk for colon cancer in the United States. Mutat. Res. 400, 553–578 (1998).
    Article CAS Google Scholar
  20. Herrero-Jimenez, P., Tomita-Mitchell, A., Furth, E.E., Morgenthaler, S. & Thilly, W.G. Population risk and physiological rate parameters for colon cancer. The union of an explicit model for carcinogenesis with the public health records of the United States. Mutat. Res. 447, 73–116 (2000).
    Article CAS Google Scholar
  21. Cook, P.J., Doll, R. & Fillingham, S.A. A mathematical model for the age distribution of cancer in man. Int. J. Cancer 4, 93–112 (1969).
    Article CAS Google Scholar
  22. Shibata, D., Navidi, W., Salovaara, R., Li, Z.-H. & Aaltonen, L.A. Somatic microsatellite mutations as molecular tumor clocks. Nature Med . 2, 676–681 (1996).
    Article CAS Google Scholar
  23. Cavelier, L., Johannisson, A. & Gyllensten, U. Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp. Cell Res. 259, 79–85 (2000).
    Article CAS Google Scholar
  24. Bodyak, N.D., Nekhaeva, E., Wei, J.Y. & Khrapko, K. Quantification and sequencing of somatic deleted mtDNA in single cells: evidence for partially duplicated mtDNA in aged human tissues. Hum. Mol. Genet. 10, 17–24 (2001).
    Article CAS Google Scholar
  25. Attardi, G., Yoneda, M. & Chomyn, A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim. Biophys. Acta 1271, 241–248 (1995).
    Article Google Scholar

Download references