Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection (original) (raw)
References
Lindquist, S. & Craig, E.A. The heat-shock proteins. Annu. Rev. Genet.22, 631–677 (1988). ArticleCAS Google Scholar
Hartl, F.U. Molecular chaperones in cellular protein folding. Nature381, 571–579 (1996). ArticleCAS Google Scholar
Buchmeier, N.A. & Heffron, F. Induction of Salmonella stress proteins upon infection of macrophages. Science248, 730–732 (1990). ArticleCAS Google Scholar
Lee, B.Y. & Horwitz, M.A. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J. Clin. Invest.96, 245–249 (1995). ArticleCAS Google Scholar
Qoronfleh, M.W., Bortner, C.A., Schwartzberg, P. & Wilkinson, B.J. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect. Immun.66, 3024–3027 (1998). CASPubMedPubMed Central Google Scholar
Cohen, I.R. & Young, D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol. Today12, 105–110 (1991). ArticleCAS Google Scholar
Young, D., Lathigra, R., Hendrix, R., Sweetser, D. & Young, R.A. Stress proteins are immune targets in leprosy and tuberculosis. Proc. Natl. Acad. Sci. USA85, 4267–4270 (1988). ArticleCAS Google Scholar
Cho, B.K. et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat-shock fusion proteins. Immunity12, 263–272 (2000). ArticleCAS Google Scholar
Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat-shock protein-chaperoned peptides. Science269, 1585–1588 (1995). ArticleCAS Google Scholar
Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat-shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757–3760 (1999). CASPubMed Google Scholar
Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med.6, 435–442 (2000). ArticleCAS Google Scholar
Castellino, F. et al. Receptor-mediated uptake of Antigen/Heat-shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med.191, 1957–1964 (2000). ArticleCAS Google Scholar
Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat-shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8, 657–665 (1998). ArticleCAS Google Scholar
Lowrie, D.B. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature400, 269–271 (1999). ArticleCAS Google Scholar
Mangan, J.A., Sole, K.M., Mitchison, D.A. & Butcher, P.D. An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res.25, 675–676 (1997). ArticleCAS Google Scholar
Young, D.B. & Garbe, T.R. Heat-shock proteins and antigens of Mycobacterium tuberculosis. Infect. Immun.59, 3086–3093 (1991). CASPubMedPubMed Central Google Scholar
Grossman, A.D., Erickson, J.W. & Gross, C.A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell38, 383–390 (1984). ArticleCAS Google Scholar
Hecker, M., Schumann, W. & Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol.19, 417–428 (1996). ArticleCAS Google Scholar
Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544 (1998). ArticleCAS Google Scholar
Bucca, G., Hindle, Z. & Smith, C.P. Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. Bacteriol.179, 5999–6004 (1997). ArticleCAS Google Scholar
Spohn, G. & Scarlato, V. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol.34, 663–674 (1999). ArticleCAS Google Scholar
Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat-shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA88, 2874–2878 (1991). ArticleCAS Google Scholar
Grandvalet, C., de Crecy-Lagard, V. & Mazodier, P. The ClpB ATPase of Streptomyces albus G belongs to the HspR heat-shock regulon. Mol. Microbiol.31, 521–532 (1999). ArticleCAS Google Scholar
Bucca, G., Brassington, A.M., Schonfeld, H.J. & Smith, C.P. The HspR regulon of streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Mol. Microbiol.38, 1093–1103. (2000). ArticleCAS Google Scholar
Pelicic, V., Reyrat, J.M. & Gicquel, B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol178, 1197–1199 (1996). ArticleCAS Google Scholar
Parish, T., Mahenthiralingam, E., Draper, P., Davis, E.O. & Colston, M.J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology143, 2267–2276 (1997). ArticleCAS Google Scholar
Rhoades, E.R., Frank, A.A. & Orme, I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung. Dis.78, 57–66 (1997). ArticleCAS Google Scholar
Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA96, 7184–7189 (1999). ArticleCAS Google Scholar
Blum, P., Ory, J., Bauernfeind, J. & Krska, J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol.174, 7436–7444 (1992). ArticleCAS Google Scholar
Grandvalet, C., Servant, P. & Mazodier, P. Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol. Microbiol.23, 77–84 (1997). ArticleCAS Google Scholar
VanBogelen, R.A., Acton, M.A. & Neidhardt, F.C. Induction of the heat-shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev.1, 525–531 (1987). ArticleCAS Google Scholar
Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol.34, 257–267 (1999). ArticleCAS Google Scholar
Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R. Jr . Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402, 79–83 (1999). ArticleCAS Google Scholar
Manabe, Y.C., Saviola, B.J., Sun, L., Murphy, J.R. & Bishai, W.R. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA96, 12844–12848 (1999). ArticleCAS Google Scholar
Glickman, M.S., Cox, J.S. & Jacobs, W.R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Molecular Cell.5, 717–727 (2000). ArticleCAS Google Scholar
McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406, 735–738 (2000). ArticleCAS Google Scholar
Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol.6, 107–112 (1998). ArticleCAS Google Scholar
Wu, S.C., Ye, R., Wu, X.C., Ng, S.C. & Wong, S.L. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol.180, 2830–2835 (1998). CASPubMedPubMed Central Google Scholar
Baldwin, S.L. et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect. Immun.66, 2951–2959 (1998). CASPubMedPubMed Central Google Scholar
Huang, Q., Richmond, J.F.L., Suzue, K., Eisen, H.N. & Young, R.A. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat-shock protein 70 fusion proteins maps to a discrete domain and is CD4+ T cell independent. J. Exp. Med.191, 403–408 (2000). ArticleCAS Google Scholar
Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M.C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA282, 677–686 (1999). ArticleCAS Google Scholar
Mehlert, A. & Young, D.B. Biochemical and antigenic characterization of the Mycobacterium tuberculosis 71kD antigen, a member of the 70kD heat-shock protein family. Mol. Microbiol.3, 125–130 (1989). ArticleCAS Google Scholar
Dussurget, O. et al. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect. Immun.69, 529–533 (2001). ArticleCAS Google Scholar
De Smet, K.A., Kempsell, K.E., Gallagher, A., Duncan, K. & Young, D.B. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology145, 3177–3184 (1999). ArticleCAS Google Scholar
Simmons, C.P. et al. Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. J. Immunol.166, 1106–1122 (2001). ArticleCAS Google Scholar