Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection (original) (raw)

References

  1. Lindquist, S. & Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).
    Article CAS Google Scholar
  2. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).
    Article CAS Google Scholar
  3. Buchmeier, N.A. & Heffron, F. Induction of Salmonella stress proteins upon infection of macrophages. Science 248, 730–732 (1990).
    Article CAS Google Scholar
  4. Lee, B.Y. & Horwitz, M.A. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J. Clin. Invest. 96, 245–249 (1995).
    Article CAS Google Scholar
  5. Qoronfleh, M.W., Bortner, C.A., Schwartzberg, P. & Wilkinson, B.J. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect. Immun. 66, 3024–3027 (1998).
    CAS PubMed PubMed Central Google Scholar
  6. Cohen, I.R. & Young, D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol. Today 12, 105–110 (1991).
    Article CAS Google Scholar
  7. Young, D., Lathigra, R., Hendrix, R., Sweetser, D. & Young, R.A. Stress proteins are immune targets in leprosy and tuberculosis. Proc. Natl. Acad. Sci. USA 85, 4267–4270 (1988).
    Article CAS Google Scholar
  8. Cho, B.K. et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat-shock fusion proteins. Immunity 12, 263–272 (2000).
    Article CAS Google Scholar
  9. Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat-shock protein-chaperoned peptides. Science 269, 1585–1588 (1995).
    Article CAS Google Scholar
  10. Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat-shock proteins by professional antigen-presenting cells. J. Immunol. 162, 3757–3760 (1999).
    CAS PubMed Google Scholar
  11. Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med. 6, 435–442 (2000).
    Article CAS Google Scholar
  12. Castellino, F. et al. Receptor-mediated uptake of Antigen/Heat-shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med. 191, 1957–1964 (2000).
    Article CAS Google Scholar
  13. Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat-shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 (1998).
    Article CAS Google Scholar
  14. Lowrie, D.B. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271 (1999).
    Article CAS Google Scholar
  15. Mangan, J.A., Sole, K.M., Mitchison, D.A. & Butcher, P.D. An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res. 25, 675–676 (1997).
    Article CAS Google Scholar
  16. Young, D.B. & Garbe, T.R. Heat-shock proteins and antigens of Mycobacterium tuberculosis. Infect. Immun. 59, 3086–3093 (1991).
    CAS PubMed PubMed Central Google Scholar
  17. Grossman, A.D., Erickson, J.W. & Gross, C.A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38, 383–390 (1984).
    Article CAS Google Scholar
  18. Hecker, M., Schumann, W. & Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417–428 (1996).
    Article CAS Google Scholar
  19. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).
    Article CAS Google Scholar
  20. Bucca, G., Hindle, Z. & Smith, C.P. Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. Bacteriol. 179, 5999–6004 (1997).
    Article CAS Google Scholar
  21. Spohn, G. & Scarlato, V. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol. 34, 663–674 (1999).
    Article CAS Google Scholar
  22. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat-shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).
    Article CAS Google Scholar
  23. Grandvalet, C., de Crecy-Lagard, V. & Mazodier, P. The ClpB ATPase of Streptomyces albus G belongs to the HspR heat-shock regulon. Mol. Microbiol. 31, 521–532 (1999).
    Article CAS Google Scholar
  24. Bucca, G., Brassington, A.M., Schonfeld, H.J. & Smith, C.P. The HspR regulon of streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Mol. Microbiol. 38, 1093–1103. (2000).
    Article CAS Google Scholar
  25. Pelicic, V., Reyrat, J.M. & Gicquel, B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178, 1197–1199 (1996).
    Article CAS Google Scholar
  26. Parish, T., Mahenthiralingam, E., Draper, P., Davis, E.O. & Colston, M.J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276 (1997).
    Article CAS Google Scholar
  27. Rhoades, E.R., Frank, A.A. & Orme, I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung. Dis. 78, 57–66 (1997).
    Article CAS Google Scholar
  28. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999).
    Article CAS Google Scholar
  29. Blum, P., Ory, J., Bauernfeind, J. & Krska, J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol. 174, 7436–7444 (1992).
    Article CAS Google Scholar
  30. Grandvalet, C., Servant, P. & Mazodier, P. Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol. Microbiol. 23, 77–84 (1997).
    Article CAS Google Scholar
  31. VanBogelen, R.A., Acton, M.A. & Neidhardt, F.C. Induction of the heat-shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev. 1, 525–531 (1987).
    Article CAS Google Scholar
  32. Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).
    Article CAS Google Scholar
  33. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R. Jr . Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).
    Article CAS Google Scholar
  34. Manabe, Y.C., Saviola, B.J., Sun, L., Murphy, J.R. & Bishai, W.R. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 96, 12844–12848 (1999).
    Article CAS Google Scholar
  35. Glickman, M.S., Cox, J.S. & Jacobs, W.R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Molecular Cell. 5, 717–727 (2000).
    Article CAS Google Scholar
  36. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).
    Article CAS Google Scholar
  37. Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6, 107–112 (1998).
    Article CAS Google Scholar
  38. Wu, S.C., Ye, R., Wu, X.C., Ng, S.C. & Wong, S.L. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180, 2830–2835 (1998).
    CAS PubMed PubMed Central Google Scholar
  39. Baldwin, S.L. et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect. Immun. 66, 2951–2959 (1998).
    CAS PubMed PubMed Central Google Scholar
  40. Huang, Q., Richmond, J.F.L., Suzue, K., Eisen, H.N. & Young, R.A. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat-shock protein 70 fusion proteins maps to a discrete domain and is CD4+ T cell independent. J. Exp. Med. 191, 403–408 (2000).
    Article CAS Google Scholar
  41. Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M.C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).
    Article CAS Google Scholar
  42. Mehlert, A. & Young, D.B. Biochemical and antigenic characterization of the Mycobacterium tuberculosis 71kD antigen, a member of the 70kD heat-shock protein family. Mol. Microbiol. 3, 125–130 (1989).
    Article CAS Google Scholar
  43. Dussurget, O. et al. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect. Immun. 69, 529–533 (2001).
    Article CAS Google Scholar
  44. De Smet, K.A., Kempsell, K.E., Gallagher, A., Duncan, K. & Young, D.B. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145, 3177–3184 (1999).
    Article CAS Google Scholar
  45. Simmons, C.P. et al. Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. J. Immunol. 166, 1106–1122 (2001).
    Article CAS Google Scholar

Download references