Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation (original) (raw)

References

  1. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long range glial signaling. Science 247, 470–473 (1990).
    Article CAS Google Scholar
  2. Charles, A. C., Merril, J. E., Ditksen, E. R. & Sanderson, M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).
    Article CAS Google Scholar
  3. Dani, J. W., Chernavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocytic networks. Neuron 8, 429–440 (1992).
    Article CAS Google Scholar
  4. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurones. Eur. J. Neurosci. 10, 2129–2142 (1998).
    Article CAS Google Scholar
  5. Hassinger, T. D.,. et al. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995).
    Article CAS Google Scholar
  6. Charles, A. C. Glia–neuron intercellular Ca2+ signaling. Dev. Neurosci. 16, 196–206 (1994).
    Article CAS Google Scholar
  7. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).
    Article CAS Google Scholar
  8. Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028 (1998).
    Article CAS Google Scholar
  9. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).
    Article CAS Google Scholar
  10. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bi-directional form of communication between neurons and astrocytes in situ. J. Neurosci, 17, 7817–7830 (1997).
    Article CAS Google Scholar
  11. Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K. & Haydon P. G. Glutamate-mediated astrocyte–neuron signaling. Nature 369, 744–747 (1994).
    Article CAS Google Scholar
  12. Bezzi, P. et al. Prostaglandins stimulate calcium dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).
    Article CAS Google Scholar
  13. Innocenti, B., Parpura, V. & Haydon P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).
    Article CAS Google Scholar
  14. Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. Snare protein dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).
    Article CAS Google Scholar
  15. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapse: glia the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).
    Article CAS Google Scholar
  16. Carmignoto, G. Reciprocal communication systems between astrocytes and neurons. Prog. Neurobiol. 62, 561–581 (2000).
    Article CAS Google Scholar
  17. Schnitzer, J., Franke, W. W. & Schachner, M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J. Cell. Biol. 90, 435–447 (1981).
    Article CAS Google Scholar
  18. Giaume, C. & Venance, L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50–64 (1998).
    Article CAS Google Scholar
  19. Finkbeiner, S. M. Glial calcium. Glia 9, 83–104 (1993).
    Article CAS Google Scholar
  20. Guthrie, P. B. et al. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).
    Article CAS Google Scholar
  21. Parri, H. R. & Crunelli, V. Sodium current in thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J. Neurosci. 18, 854–867 (1998).
    Article CAS Google Scholar
  22. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).
    Article CAS Google Scholar
  23. Wyllie, D. J. A., Behe, B. & Colquhoun D. Single-channel activation and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J. Physiol. (Lond.) 510, 1–18 (1998).
    Article CAS Google Scholar
  24. Wenzel, A., Villa, M., Mohler, H. & Benke, D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J. Neurochem. 66, 1240–1247 (1996).
    Article CAS Google Scholar
  25. Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).
    Article CAS Google Scholar
  26. Porter, J. T. & Mccarthy, K. D. GFAP positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca]i . Glia 13, 101–112 (1995).
    Article CAS Google Scholar
  27. Araque, A., Sanzgiri, R. P., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822–6829 (1998).
    Article CAS Google Scholar
  28. Spreafico, R. et al. Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. Brain Res. Dev. Brain Res. 82, 231–244 (1994).
    Article CAS Google Scholar
  29. Golshani, P., Warren, R. A. & Jones, E. G. Progression of change in NMDA, non-NMDA and metabotropic glutamate receptor function at the developing corticothalamic synapse. J. Neurophysiol. 80, 143–154 (1998).
    Article CAS Google Scholar
  30. Misra, S. C., Brickley, S. G., Wyllie, D. J. & Cull-Candy, S. G. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar purkinje cells. J. Physiol. (Lond.) 525, 299–305 (2000).
    Article CAS Google Scholar
  31. Emptage, N. J, Reid., C. A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store operated calcium entry and spontaneous transmitter release. Neuron 29, 197–208 (20 01).
  32. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).
    Article CAS Google Scholar
  33. Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995).
    Article CAS Google Scholar
  34. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72S, 77–98 (1993).
    Article Google Scholar
  35. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
    Article CAS Google Scholar
  36. Catalano, S. M. & Shatz C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998).
    Article CAS Google Scholar
  37. Miller, B., Chou, L. & Finlay, B. L. The early development of thalamocortical and corticothalamic projections. J. Comp. Neurol. 335, 16–41 (1993).
    Article CAS Google Scholar
  38. Liu, X. B., Honda, C. N. & Jones, E. G. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J. Comp. Neurol. 352, 69–91 (1995).
    Article CAS Google Scholar
  39. Zantua, J. B., Wasserstrom, S. P., Arends, J. J. A., Jacquin, M. F. & Woolsey, T. A. Postnatal development of mouse “whisker” thalamus: ventroposterior medial nucleus (VPM), barreloids, and their thalamocortical relay neurons. Somatosens. Motor Res. 13, 307–322 (1996).
    Article CAS Google Scholar
  40. Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).
    Article CAS Google Scholar
  41. Collingridge, G. C. & Bliss, T.V. Memories of NMDA receptors and LTP. Trends Neurosci. 18, 54–56 (1995).
    Article CAS Google Scholar
  42. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
    Article CAS Google Scholar
  43. Perkel, D. J., Petrozzino, J. J., Nicoll, R. A. & Connor, J. A. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long term potentiation. Neuron 11, 817–823 (1993).
    Article CAS Google Scholar
  44. Silver, J., Lopez, S. E., Wahlsten, D. & Coughlin, J. Axonal guidance during development of the great cerebral commisures, descriptive and experimental studies in vivo on the role of preformed glial pathways. J. Comp. Neurol. 210, 10–29 (1982).
    Article CAS Google Scholar
  45. Rakic, P., Cameron, R. S. & Komuro, H. Recognition adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4, 63–69 (1994).
    Article CAS Google Scholar
  46. Lois, C., Garcia-Verdugo, J.-M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).
    Article CAS Google Scholar
  47. Turner, J. P., Leresche, N., Guyon, A., Soltesz, I. & Crunelli, V. Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors. J. Physiol. (Lond.) 480, 281–295 (1994).
    Article CAS Google Scholar
  48. Perez Velazquez, J. L. & Carlen, P. L. Development of firing patterns and electrical properties in neurons of the rat ventrobasal thalamus. Dev. Brain. Res. 91, 164–170 (1996).
    Article CAS Google Scholar

Download references