CD4+ T cell effectors can become memory cells with high efficiency and without further division (original) (raw)

References

  1. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).
    Article CAS Google Scholar
  2. Swain, S. L. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1, 543–552 (1994).
    Article CAS Google Scholar
  3. Bruno, L., Kirberg, J. & von Boehmer, H. On the cellular basis of immunological T cell memory. Immunity 2, 37–43 (1995).
    Article CAS Google Scholar
  4. McHeyzer-Williams M. G. & Davis, M. M. Antigen-specific development of primary and memory T cells in vivo. Science 268, 106–111 (1995).
    Article CAS Google Scholar
  5. Liu, Y., Wenger, R. H., Zhao, M. & Nielsen, P. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J. Exp. Med. 185, 251–262 (1997).
    Article CAS Google Scholar
  6. Cerwenka, A., Carter, L. L., Ream, J. B., Swain, S. L. & Dutton, R.W. In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytokines. J. Immunol. 161, 97–105 (1998).
    CAS PubMed Google Scholar
  7. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).
    Article CAS Google Scholar
  8. Jacob, J. & Baltimore, D. Modeling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).
    Article CAS Google Scholar
  9. Farber, D. L. Differential TCR signaling and the generation of memory T cells. J. Immunol. 160, 535–539 (1998).
    CAS PubMed Google Scholar
  10. Ahmadzadeh, M., Hussain, S. F. & Farber, D. L. Effector CD4 T cells are biochemically distinct from the memory subset: Evidence for long-term persistence of effectors in vivo. J. Immunol. 163, 3053–3063 (1999).
    CAS PubMed Google Scholar
  11. Pihlgren, M., Dubois, P. M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).
    Article CAS Google Scholar
  12. Topham, D. J., Tripp, R. A., Hamilton-Easton, A. M., Sarawar, S. R. & Doherty, P. C. Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J. Immunol. 157, 2947–2952 (1996).
    CAS PubMed Google Scholar
  13. Swain, S. L. et al. From naïve to memory T cells. Immunol. Rev. 150, 143–167 (1996).
    Article CAS Google Scholar
  14. Ahmed, R. & Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 272, 54–60 (1996).
    Article CAS Google Scholar
  15. Sprent, J. Immunological memory. Curr. Opin. Immunol. 9, 371–379 (1997).
    Article CAS Google Scholar
  16. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).
    Article CAS Google Scholar
  17. Rogers, P. R., Dubey, C. & Swain, S. L. Qualitative changes accompany memory T cell generation: Faster, more effective responses at lower doses of antigen. J. Immunol. 164, 2338–2346 (2000).
    Article CAS Google Scholar
  18. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: From activation to memory formation. Immunity 11, 163–171 (1999).
    Article CAS Google Scholar
  19. Dubey, C., Croft, M. & Swain, S. L. Costimulatory requirements of na?ve CD4+ T cells: ICAM-1 or B7–1 can costimulate naïve CD4 T cell activation but both are required for optimum response. J. Immunol. 155, 45–57 (1995).
    CAS PubMed Google Scholar
  20. Rogers, P. R., Huston, G. & Swain, S. L. High antigen density and IL-2 are required for generation of CD4 effectors secreting Th1 rather than Th0 Cytokines. J. Immunol. 161, 3844 (1998).
    CAS PubMed Google Scholar
  21. Swain, S. L. Helper T cell differentiation. Curr. Opin. Immunol. 11, 180–185 (1999).
    Article CAS Google Scholar
  22. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100, 655–669 (2000).
    Article CAS Google Scholar
  23. Ouyang, W. et al. STAT6-independent GATA-3 autoactivation directs IL-4 independent Th2 development and commitment. Immunity 12, 27–37 (2000).
    Article CAS Google Scholar
  24. Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).
    Article CAS Google Scholar
  25. Fitzpatrick, D. R. et al. Distinct methylation of the interferon γ (IFN-γ) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-γ promoter demethylation and mRNA expression are heritable in CD44(high)CD8+ T cells. J. Exp. Med. 188, 103–117 (1998).
    Article CAS Google Scholar
  26. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).
    Article CAS Google Scholar
  27. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).
    Article CAS Google Scholar
  28. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).
    Article CAS Google Scholar
  29. Richter, A., Lohing, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).
    Article CAS Google Scholar
  30. Fitzpatrick, D. R., Shirley, K. M. & Kelso, A. Stable epigenetic inheritance of regional IFN-γ promoter demethylation in CD44high CD8+ T lymphocytes. J. Immunol. 162, 5053–5057 (1999).
    CAS PubMed Google Scholar
  31. Viret, C., Wong, F. S. & Janeway, C. A. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide: self-MHC complex recognition. Immunity 10, 559–568 (1999).
    Article CAS Google Scholar
  32. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).
    Article CAS Google Scholar
  33. Lee, W. T. & Pelletier, W. J. Visualizing memory phenotype development after in vitro stimulation of CD4 T cells. Cell. Immunol. 188, 1–11 (1998).
    Article CAS Google Scholar
  34. Zhang, X. et al. Unequal death in Th1 and Th2 effectors: Th1 but not Th2 effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).
    Article CAS Google Scholar
  35. Harbertson, J., Biederman, E., Bennet, K. E., Kondrack, R. M. & Bradley, L, M. Withdrawal of stimulation may initiate the transition of effector to memory cells. J. Exp. Med. (submitted, 2001).
  36. Bradley, L. M., Duncan, D. D., Tonkonogy, S. & Swain, S. L. Characterization of antigen-specific CD4+ effector T cells in vivo: immunization results in a transient population of MEL-14−, CD45RB− helper cells that secretes interleukin 2 (IL-2), IL-3, IL-4, and interferon γ. J. Exp. Med. 174, 547–559 (1991).
    Article CAS Google Scholar
  37. Jelley-Gibbs, D. M., Lepak, N., Yen, M. & Swain, S.L. Two distinct stages in the transition from naïve CD4 T cells to effectors, early antigen dependent and late cytokine driven expansion and differentiation. J. Immunol. 165, 5017–5026 (2000).
    Article CAS Google Scholar
  38. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).
    Article CAS Google Scholar
  39. Cerwenka, A., Morgan, T. M. & Dutton, R. W. Naïve, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: Homing properties rather than initial frequencies are crucial. J. Immunol. 163, 5535–5543 (1999).
    CAS PubMed Google Scholar
  40. Selin, L. K. et al. Attrition of T cell memory: Selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).
    Article CAS Google Scholar
  41. Whitmire J. K., Murali-Krishna, K., Altman, J. & Ahmed, R. Antiviral CD4 and CD8 T-cell memory: differences in the size of the response and activation requirements. Phil. Trans. R. Soc. Lond. B 355, 373–379 (2000).
    Article CAS Google Scholar
  42. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).
    Article CAS Google Scholar
  43. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).
    Article CAS Google Scholar
  44. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).
    Article CAS Google Scholar
  45. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).
    Article CAS Google Scholar
  46. Haynes, L., Linton, P-J., Eaton, S. M., Tonkonogy, S. L. & Swain, S. L. Interleukin-2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naïve cells of aged mice. J. Exp. Med. 190, 1013–1023 (1999).
    Article CAS Google Scholar

Download references