Weibel, E. R. Morphometry of the Human Lung (Springer Berlin Heidelberg, 1963). Book Google Scholar
Bogaert, D., De Groot, R. & Hermans, P. W. M. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis.4, 144–154 (2004). This review discusses how nasopharyngeal colonization withS. pneumoniaecan be an important prerequisite to respiratory and invasive pneumococcal disease. ArticleCASPubMed Google Scholar
Yun, Y. et al. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS ONE9, e113466 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science336, 489–493 (2012). This study in mice highlights that the early presence of microbiota can lead to host epigenetic changes, decreased accumulation of pro-inflammatory cells and development towards an asthmatic phenotype later in life. ArticleCASPubMedPubMed Central Google Scholar
Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med.20, 642–647 (2014). This paper comprehensively presents mechanistic evidence that the presence of the lung microbiota early in life promotes the healthy maturation of the neonatal immune system within a postnatal window of opportunity. ArticleCASPubMed Google Scholar
Som, P. M. & Naidich, T. P. Illustrated review of the embryology and development of the facial region, part 1: early face and lateral nasal cavities. Am. J. Neuroradiol.34, 2233–2240 (2013). ArticleCASPubMedPubMed Central Google Scholar
Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development141, 502–513 (2014). ArticleCASPubMedPubMed Central Google Scholar
Burri, P. H. Fetal and postnatal development of the lung. Annu. Rev. Physiol.46, 617–628 (1984). ArticleCASPubMed Google Scholar
Wostmann, B. S. The germfree animal in nutritional studies. Annu. Rev. Nutr.1, 257–279 (1981). ArticleCASPubMed Google Scholar
Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3−CD4+CD45+ cells. Immunity17, 31–40 (2002). ArticleCASPubMed Google Scholar
Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep.6, 23129 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome4, 29 (2016). ArticlePubMedPubMed Central Google Scholar
Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science351, 1296–1302 (2016). ArticleCASPubMed Google Scholar
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA107, 11971–11975 (2010). ArticlePubMedPubMed Central Google Scholar
Bosch, A. A. et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine9, 336–345 (2016). ArticlePubMedPubMed Central Google Scholar
Biesbroek, G. et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am. J. Respir. Crit. Care Med.190, 1283–1292 (2014). This is a longitudinal study on the nasopharyngeal microbiota in children up to 2 years of age that links microbiome stability over time to environmental drivers, such as breastfeeding, specific bacterial community members and consecutive decreased rates of respiratory tract infections. ArticlePubMed Google Scholar
Teo, S. M. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe17, 704–715 (2015). This study in infants links nasopharyngeal colonization withStreptococcusspp.,Moraxellaspp. andHaemophilusspp. early in life to the development of LRT infections, consecutive atopic disease and future asthma. ArticleCASPubMedPubMed Central Google Scholar
Biesbroek, G. et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am. J. Respir. Crit. Care Med.190, 298–308 (2014). ArticlePubMed Google Scholar
Duijts, L., Jaddoe, V. W. V., Hofman, A. & Moll, H. A. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics126, e18–e25 (2010). ArticlePubMed Google Scholar
Schanche, M. et al. High-resolution analyses of overlap in the microbiota between mothers and their children. Curr. Microbiol.71, 283–290 (2015). ArticleCASPubMed Google Scholar
Jeurink, P. V. et al. Human milk: a source of more life than we imagine. Benef. Microbes4, 17–30 (2013). ArticleCASPubMed Google Scholar
Hicks, L. A., Taylor, T. H. & Hunkler, R. J. U.S. outpatient antibiotic prescribing, 2010. N. Engl. J. Med.368, 1461–1462 (2013). ArticleCASPubMed Google Scholar
Prevaes, S. M. et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med.193, 504–515 (2016). ArticleCASPubMed Google Scholar
Pettigrew, M. M. et al. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl. Environ. Microbiol.78, 6262–6270 (2012). This cohort study indicates that specific commensal nasopharyngeal bacteria, includingCorynebacteriumspp. andDolosigranulumspp., are associated with the exclusion of pathogens that are known to cause acute otitis media (AOM) and the risk of AOM. ArticleCASPubMedPubMed Central Google Scholar
Leibovitz, E. et al. Recurrent acute otitis media occurring within one month from completion of antibiotic therapy: relationship to the original pathogen. Pediatr. Infect. Dis. J.22, 209–216 (2003). PubMed Google Scholar
Bogaert, D. et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS ONE6, e17035 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bogaert, D. et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet363, 1871–1872 (2004). ArticleCASPubMed Google Scholar
Mika, M. et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J. Allergy Clin. Immunol.135, 905–912.e11 (2015). ArticlePubMed Google Scholar
Spijkerman, J. et al. Long-term effects of pneumococcal conjugate vaccine on nasopharyngeal carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis. PLoS ONE7, e39730 (2012). ArticleCASPubMedPubMed Central Google Scholar
Greenberg, D. et al. The contribution of smoking and exposure to tobacco smoke to Streptococcus pneumoniae and Haemophilus influenzae carriage in children and their mothers. Clin. Infect. Dis.42, 897–903 (2006). ArticlePubMed Google Scholar
Lim, M. Y. et al. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci. Rep.6, 23745 (2016). ArticleCASPubMedPubMed Central Google Scholar
Stearns, J. C. et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J.9, 1246–1259 (2015). ArticlePubMedPubMed Central Google Scholar
Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE5, e9836 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Charlson, E. S. et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS ONE5, e15216 (2010). ArticleCASPubMedPubMed Central Google Scholar
Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med.187, 1067–1075 (2013). ArticlePubMedPubMed Central Google Scholar
Whelan, F. J. et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. Am. Thorac. Soc.11, 513–521 (2014). ArticlePubMed Google Scholar
Vissing, N. H., Chawes, B. L. K. & Bisgaard, H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am. J. Respir. Crit. Care Med.188, 1246–1252 (2013). This paper demonstrates that pharyngeal colonization byS. pneumoniae, H. influenzaeorM. catarrhalisat 4 weeks of age is associated with an increased risk of respiratory tract infections during the first 3 years of life. ArticlePubMed Google Scholar
Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med.22, 250–253 (2016). In this proof-of-principle study, the investigators aim to restore the initial microbial communities of newborns that are delivered by caesarean section by transferring the maternal vaginal microbiota. ArticleCASPubMedPubMed Central Google Scholar
Zhou, Y. et al. Exploration of bacterial community classes in major human habitats. Genome Biol.15, R66 (2014). PubMedPubMed Central Google Scholar
Wos-Oxley, M. L. et al. Exploring the bacterial assemblages along the human nasal passage. Environ. Microbiol.18, 2259–2271 (2016). ArticleCASPubMed Google Scholar
Yan, M. et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe14, 631–640 (2013). ArticleCASPubMedPubMed Central Google Scholar
Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol.13, R42 (2012). ArticleCASPubMedPubMed Central Google Scholar
de Steenhuijsen Piters, W. A. et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J.10, 97–108 (2016). ArticleCASPubMed Google Scholar
van den Bergh, M. R. et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS ONE7, e47711 (2012). This is the first study to investigate the prevalence and co-occurrence of potential bacterial respiratory pathogens and viruses in a large cohort of healthy children. ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin. Microbiol. Infect.22, 458.e1–458.e9 (2016). ArticleCAS Google Scholar
Wylie, K. M., Mihindukulasuriya, K. A., Sodergren, E., Weinstock, G. M. & Storch, G. A. Sequence analysis of the human virome in febrile and afebrile children. PLoS ONE7, e27735 (2012). This study is the first to use metagenomics to assess the DNA and RNA virome in symptomatic and asymptomatic individuals, and reports that anelloviruses and enteroviruses are ubiquitous. ArticleCASPubMedPubMed Central Google Scholar
Eidi, S. et al. Nasal and indoors fungal contamination in healthy subjects. Health Scope5, e30033 (2016). Article Google Scholar
Charlson, E. S. et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am. J. Respir. Crit. Care Med.186, 536–545 (2012). ArticlePubMedPubMed Central Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature486, 59–67 (2012). ArticleCASPubMed Google Scholar
Huttenhower, C., Kostic, A. D. & Xavier, R. J. Inflammatory bowel disease as a model for translating the microbiome. Immunity40, 843–854 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kampmann, C., Dicksved, J., Engstrand, L. & Rautelin, H. Composition of human faecal microbiota in resistance to Campylobacter infection. Clin. Microbiol. Infect.22, 61.e1–61.e8 (2016). ArticleCAS Google Scholar
Fredricks, D. N., Fiedler, T. L. & Marrazzo, J. M. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med.353, 1899–1911 (2005). ArticleCASPubMed Google Scholar
Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA108, 4680–4687 (2011). ArticleCASPubMed Google Scholar
DiGiulio, D. B., Stevenson, D. K., Shaw, G., Lyell, D. J. & Relman, D. A. Reply to Keelan and Payne: microbiota-related pathways for preterm birth. Proc. Natl Acad. Sci. USA112, E6415 (2015). CASPubMedPubMed Central Google Scholar
Hilty, M. et al. Nasopharyngeal microbiota in infants with acute otitis media. J. Infect. Dis.205, 1048–1055 (2012). ArticleCASPubMed Google Scholar
Abreu, N. A. et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci. Transl Med.4, 151ra124 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Bomar, L., Brugger, S. D., Yost, B. H., Davies, S. S. & Lemon, K. P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio7, e01725-15 (2016). Thisin vitrostudy describes a mechanistic basis for the epidemiological association betweenCorynebacteriumspp. andS. pneumoniaeby demonstrating thatC. accolenshydrolyses host triacylglycerols into free fatty acids that inhibit pneumococcal growth. ArticlePubMedPubMed CentralCAS Google Scholar
Laufer, A. S. et al. Microbial communities of the upper respiratory tract and otitis media in children. mBio2, e00245-10 (2011). ArticlePubMedPubMed Central Google Scholar
Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol.14, 685–690 (2013). ArticleCASPubMedPubMed Central Google Scholar
Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature465, 346–349 (2010). ArticleCASPubMed Google Scholar
Huxley, E. J., Viroslav, J., Gray, W. R. & Pierce, A. K. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am. J. Med.64, 564–568 (1978). ArticleCASPubMed Google Scholar
Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio6, e00037-15 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome1, 19 (2013). ArticlePubMedPubMed Central Google Scholar
Marsh, R. L. et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx. Microbiome4, 37 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lohmann, P. et al. The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr. Res.76, 294–301 (2014). ArticleCASPubMed Google Scholar
Payne, M. S. et al. Molecular microbiological characterization of preterm neonates at risk of bronchopulmonary dysplasia. Pediatr. Res.67, 412–418 (2010). ArticlePubMed Google Scholar
Mourani, P. M., Harris, J. K., Sontag, M. K., Robertson, C. E. & Abman, S. H. Molecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants. PLoS ONE6, e25959 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dickson, R. P. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc.12, 821–830 (2015). This paper demonstrates that spatial variation in the microbiota of healthy lungs is very minimal, which suggests that the community composition in the LRT is determined principally by immigration and the elimination of microbial communities that originate from the URT. ArticlePubMedPubMed Central Google Scholar
Abbas, A. A. et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am. J. Transplant.http://dx.doi.org/10.1111/ajt.14076 (2016).
Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE4, e7370 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Young, J. C. et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am. J. Transplant.15, 200–209 (2015). ArticleCASPubMed Google Scholar
van Woerden, H. C. et al. Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect. Dis.13, 69 (2013). ArticlePubMedPubMed Central Google Scholar
Cleland, E. J. et al. The fungal microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes and patient outcomes. Int. Forum Allergy Rhinol.4, 259–265 (2014). ArticlePubMed Google Scholar
Charlson, E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med.184, 957–963 (2011). ArticlePubMedPubMed Central Google Scholar
Venkataraman, A. et al. Application of a neutral community model to assess structuring of the human lung microbiome. mBio6, e02284-14 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Willner, D. et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J.6, 471–474 (2012). ArticleCASPubMed Google Scholar
Mashima, I. & Nakazawa, F. The influence of oral Veillonella species on biofilms formed by Streptococcus species. Anaerobe28, 54–61 (2014). ArticlePubMed Google Scholar
Cook, L. C., LaSarre, B. & Federle, M. J. Interspecies communication among commensal and pathogenic streptococci. mBio4, e00382-13 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Armbruster, C. E. et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. mBio1, e00102-10 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Wos-Oxley, M. L. et al. A poke into the diversity and associations within human anterior nare microbial communities. ISME J.4, 839–851 (2010). ArticlePubMed Google Scholar
Regev-Yochay, G., Trzcinski, K., Thompson, C. M., Malley, R. & Lipsitch, M. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J. Bacteriol.188, 4996–5001 (2006). ArticleCASPubMedPubMed Central Google Scholar
Deasy, A. M. et al. Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: a controlled human infection study. Clin. Infect. Dis.60, 1512–1520 (2015). ArticlePubMed Google Scholar
Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog.12, e1005812 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Ramsey, M. M., Freire, M. O., Gabrilska, R. A., Rumbaugh, K. P. & Lemon, K. P. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol.7, 1230 (2016). ArticlePubMedPubMed Central Google Scholar
Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature535, 511–516 (2016). ArticleCASPubMed Google Scholar
Tong, T. T., Mörgelin, M., Forsgren, A. & Riesbeck, K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J. Infect. Dis.195, 1661–1670 (2007). ArticleCAS Google Scholar
de Steenhuijsen Piters, W. A., Sanders, E. A. & Bogaert, D. The role of the local microbial ecosystem in respiratory health and disease. Philos. Trans. R. Soc. B Biol. Sci.370, 20140294 (2015). ArticleCAS Google Scholar
Taubenberger, J. K., Reid, A. H. & Fanning, T. G. The 1918 influenza virus: a killer comes into view. Virology274, 241–245 (2000). ArticleCASPubMed Google Scholar
Bosch, A. A., Biesbroek, G., Trzcinski, K., Sanders, E. A. M. & Bogaert, D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog.9, e1003057 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sajjan, U., Wang, Q., Zhao, Y., Gruenert, D. C. & Hershenson, M. B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med.178, 1271–1281 (2008). ArticleCASPubMedPubMed Central Google Scholar
Avadhanula, V. et al. Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J. Virol.80, 1629–1636 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ramphal, R., Small, P. M., Shands, J. W., Fischlschweiger, W. & Small, P. A. Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect. Immun.27, 614–619 (1980). ArticleCASPubMedPubMed Central Google Scholar
Siegel, S. J., Roche, A. M. & Weiser, J. N. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe16, 55–67 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pittet, L. A., Hall-Stoodley, L., Rutkowski, M. R. & Harmsen, A. G. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am. J. Respir. Cell Mol. Biol.42, 450–460 (2010). ArticleCASPubMed Google Scholar
Raza, M. W., Blackwell, C. C., Elton, R. A. & Weir, D. M. Bactericidal activity of a monocytic cell line (THP-1) against common respiratory tract bacterial pathogens is depressed after infection with respiratory syncytial virus. J. Med. Microbiol.49, 227–233 (2000). ArticleCASPubMed Google Scholar
Didierlaurent, A. et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med.205, 323–329 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sun, K. & Metzger, D. W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat. Med.14, 558–564 (2008). ArticleCASPubMed Google Scholar
Robinson, K. M. et al. Influenza A virus exacerbates staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J. Infect. Dis.209, 865–875 (2014). ArticleCASPubMed Google Scholar
Ni, K. et al. Pharyngeal microflora disruption by antibiotics promotes airway hyperresponsiveness after respiratory syncytial virus infection. PLoS ONE7, e41104 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wyde, P. R., Six, H. R., Ambrose, M. W. & Throop, B. J. Muramyl peptides and polyinosinic-polycytodylic acid given to mice prior to influenza virus challenge reduces pulmonary disease and mortality. J. Biol. Response Mod.9, 98–102 (1990). CASPubMed Google Scholar
Sajjan, U. S. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J.20, 2121–2123 (2006). ArticleCASPubMed Google Scholar
Gulraiz, F., Bellinghausen, C., Bruggeman, C. A. & Stassen, F. R. Haemophilus influenzae increases the susceptibility and inflammatory response of airway epithelial cells to viral infections. FASEB J.29, 849–858 (2015). ArticleCASPubMed Google Scholar
Bellinghausen, C. et al. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respir. Res.17, 68 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
de Steenhuijsen Piters, W. A. A. et al. Nasopharyngeal microbiota, host transcriptome and disease severity in children with respiratory syncytial virus infection. Am. J. Respir. Crit. Care Med. 1104–1115 (2016). This clinical study shows that the composition of the microbiota of the nasopharynx during early RSV infection is strongly associated with the differential expression of genes that are linked to innate immune pathways that, in turn, are associated with increased RSV disease severity.
Scheiblauer, H., Reinacher, M., Tashiro, M. & Rott, R. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J. Infect. Dis.166, 783–791 (1992). ArticleCASPubMed Google Scholar
Tashiro, M., Ciborowski, P., Klenk, H.-D., Pulverer, G. & Rott, R. Role of Staphylococcus protease in the development of influenza pneumonia. Nature325, 536–537 (1987). ArticleCASPubMed Google Scholar
Short, K. R. et al. Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T cell immunity. J. Innate Immun.6, 129–139 (2014). ArticleCASPubMed Google Scholar
Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA108, 5354–5359 (2011). ArticleCASPubMedPubMed Central Google Scholar
Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science326, 257–263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity37, 158–170 (2012). This study highlights that LPS signalling of commensal bacteria contributes to immune 'readiness' and an adequate innate immune response following viral infection. ArticleCASPubMedPubMed Central Google Scholar
Pride, D. T., Salzman, J. & Relman, D. A. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environ. Microbiol.14, 2564–2576 (2012). ArticleCASPubMedPubMed Central Google Scholar
Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol.1, 16031 (2016). ArticleCASPubMedPubMed Central Google Scholar
Boase, S. et al. Bacterial-induced epithelial damage promotes fungal biofilm formation in a sheep model of sinusitis. Int. Forum Allergy Rhinol.3, 341–348 (2013). ArticlePubMed Google Scholar
Diaz, P. I. et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect. Immun.80, 620–632 (2012). ArticleCASPubMedPubMed Central Google Scholar
Xu, H. et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell. Microbiol.16, 214–231 (2014). ArticleCASPubMed Google Scholar
Briard, B., Heddergott, C. & Latgé, J.-P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio7, e00219 (2016). ArticleCASPubMedPubMed Central Google Scholar
Roux, D. et al. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit. Care Med.37, 1062–1067 (2009). ArticlePubMed Google Scholar
Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol.1, 183–197 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity41, 152–165 (2014). ArticleCASPubMed Google Scholar
Sutherland, D. B., Suzuki, K. & Fagarasan, S. Fostering of advanced mutualism with gut microbiota by immunoglobulin A. Immunol. Rev.270, 20–31 (2016). ArticleCASPubMed Google Scholar
LeVine, A. M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol.165, 3934–3940 (2000). ArticleCASPubMed Google Scholar
Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol.44, 3100–3111 (2007). ArticleCASPubMed Google Scholar
Kim, D.-Y. et al. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J. Immunol.186, 4253–4262 (2011). ArticleCASPubMed Google Scholar
Jahnsen, F. L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol.177, 5861–5867 (2006). ArticleCASPubMed Google Scholar
Kopf, M., Schneider, C. & Nobs, S. P. The development and function of lung-resident macrophages and dendritic cells. Nat. Immunol.16, 36–44 (2014). ArticleCAS Google Scholar
Hussell, T. & Bell, T. J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol.14, 81–93 (2014). ArticleCASPubMed Google Scholar
Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature506, 503–506 (2014). ArticleCASPubMedPubMed Central Google Scholar
Holt, P. G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med.177, 397–407 (1993). ArticleCASPubMed Google Scholar
Holt, P. G., Schon-Hegrad, M. A. & Oliver, J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J. Exp. Med.167, 262–274 (1988). ArticleCASPubMed Google Scholar
Soroosh, P. et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med.210, 775–788 (2013). ArticleCASPubMedPubMed Central Google Scholar
McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe19, 550–559 (2016). ArticleCASPubMed Google Scholar
Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet379, 2151–2161 (2012). ArticlePubMed Google Scholar
Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell163, 1079–1095 (2015). ArticleCASPubMed Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6, 1621–1624 (2012). ArticleCASPubMedPubMed Central Google Scholar
Goleva, E. et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am. J. Respir. Crit. Care Med.188, 1193–1201 (2013). ArticleCASPubMedPubMed Central Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol.12, 87 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Biesbroek, G. et al. Deep sequencing analyses of low density microbial communities: working at the boundary of accurate microbiota detection. PLoS ONE7, e32942 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dickson, R. P. et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol.1, 16113 (2016). ArticleCASPubMedPubMed Central Google Scholar
Larsen, J. M. et al. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology144, 333–342 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bäckhed, F., Normark, S., Schweda, E. K. H., Oscarson, S. & Richter-Dahlfors, A. Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect.5, 1057–1063 (2003). ArticleCASPubMed Google Scholar
Coats, S. R., Reife, R. A., Bainbridge, B. W., Pham, T. T.-T. & Darveau, R. P. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at Toll-like receptor 4 in human endothelial cells. Infect. Immun.71, 6799–6807 (2003). ArticleCASPubMedPubMed Central Google Scholar
Munford, R. S. Sensing Gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect. Immun.76, 454–465 (2008). ArticleCASPubMed Google Scholar
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol.11, 76–83 (2010). ArticleCASPubMed Google Scholar
Kao, C.-Y. et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol.173, 3482–3491 (2004). ArticleCASPubMed Google Scholar
Wang, J. et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun.4, 2106 (2013). This study shows that nasalS. aureusinstillation results in TLR2-dependent polarization towards anti-inflammatory alveolar macrophages, which attenuates influenza virus-induced immune-mediated lung injury. ArticlePubMedCAS Google Scholar
Rice, T. A. et al. Signaling via pattern recognition receptors NOD2 and TLR2 contributes to immunomodulatory control of lethal pneumovirus infection. Antiviral Res.132, 131–140 (2016). ArticleCASPubMedPubMed Central Google Scholar
Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med.16, 228–231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Herbst, T. et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med.184, 198–205 (2011). ArticleCASPubMed Google Scholar
Krishnamoorthy, N. et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat. Med.18, 1525–1530 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol.12, 639–646 (2011). ArticleCASPubMedPubMed Central Google Scholar
Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity43, 1011–1021 (2015). ArticleCASPubMedPubMed Central Google Scholar
Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell138, 30–50 (2009). ArticleCASPubMed Google Scholar
McGeoch, D. J., Rixon, F. J. & Davison, A. J. Topics in herpesvirus genomics and evolution. Virus Res.117, 90–104 (2006). ArticleCASPubMed Google Scholar
Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature447, 326–329 (2007). ArticleCASPubMed Google Scholar
Kim, E. Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med.14, 633–640 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mejias, A. et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med.10, e1001549 (2013). ArticlePubMedPubMed Central Google Scholar
England, R. J., Homer, J. J., Knight, L. C. & Ell, S. R. Nasal pH measurement: a reliable and repeatable parameter. Clin. Otolaryngol. Allied Sci.24, 67–68 (1999). ArticleCASPubMed Google Scholar
Brunworth, J. D., Garg, R., Mahboubi, H., Johnson, B. & Djalilian, H. R. Detecting nasopharyngeal reflux: a novel pH probe technique. Ann. Otol. Rhinol. Laryngol.121, 427–430 (2012). ArticlePubMed Google Scholar
Ayazi, S. et al. A new technique for measurement of pharyngeal pH: normal values and discriminating pH threshold. J. Gastrointest. Surg.13, 1422–1429 (2009). ArticleCASPubMed Google Scholar
Keck, T. & Lindemann, J. Numerical simulation and nasal air-conditioning. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg.http://dx.doi.org/10.3205/cto000072 (2010).
Ingenito, E. P. et al. Indirect assessment of mucosal surface temperatures in the airways: theory and tests. J. Appl. Physiol.63, 2075–2083 (1987). ArticleCASPubMed Google Scholar
McFadden, E. R. et al. Thermal mapping of the airways in humans. J. Appl. Physiol.58, 564–570 (1985). ArticlePubMed Google Scholar
Morgan, N. J., MacGregor, F. B., Birchall, M. A., Lund, V. J. & Sittampalam, Y. Racial differences in nasal fossa dimensions determined by acoustic rhinometry. Rhinology33, 224–228 (1995). CASPubMed Google Scholar
Walsh, J. H. et al. Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J. Sleep Res.17, 230–238 (2008). ArticlePubMed Google Scholar