Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression (original) (raw)
Abbreviations
_β_-Cat:
_β_-Catenin
BCL-2:
B-Cell CLL/Lymphoma 2
bHLH:
basic Helix Loop Helix
BRAF:
viral RAF murine sarcoma viral oncogene homolog B1
Cdkn2a:
cyclin-dependent kinase inhibitor 2A
ChIP:
chromatin immunoprecipitation
c-MYC:
cellular myelocytomatosis oncogene cellular homolog
CRE:
cyclisation recombination
CTRL:
control
DCT:
dopachrome tautomerase
E:
embryonic day
EDN3/EDNRB:
endothelin 3/endothelin receptor B
ERK:
extracellular signal-regulated kinase
EMT:
epithelial-to-mesenchymal transition
FL:
floxed
HF:
hair follicle
KD:
knockdown
LacZ:
_β_-D-galactosidase
MC1R:
melanocortin 1 receptor
MCKO:
melanocyte-specific knockout
MCWT:
melanocyte-specific wild-type
MEK:
MAPK/ERK kinase
MITF:
microphthalmia-associated transcription factor
P:
postnatal day
PAX3:
paired-box 3
PGP:
P-glycoprotein
PMEL:
premelanosome protein
NHM:
normal human primary melanocytes
NRAS:
neuroblastoma RAS viral oncogene homolog
qRT-PCR:
quantitative reverse transcription-polymerase chain reaction
S100b:
S100 calcium-binding protein B
shRNA:
short hairpin RNA
siRNA:
short interfering RNA
SOX10:
sex-determining region Y (SRY)-box 10
TG:
transgenic
TGF-β:
transforming growth factor β
TYRP1:
tyrosinase-related protein 1
TYR:
tyrosinase
UV:
ultraviolet
X-gal:
5-bromo-4-chloro-3-indolyl-_β_-D-galactopyranoside
ZEB:
zinc finger E-box binding protein
References
- Ernfors P . Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 2010; 316: 1397–1407.
Article CAS Google Scholar - Luciani F, Champeval D, Herbette A, Denat L, Aylaj B, Martinozzi S et al. Biological and mathematical modeling of melanocyte development. Development 2011; 138: 3943–3954.
Article CAS Google Scholar - Osawa M . Melanocyte stem cells (June 30, 2009), StemBook, ed. The Stem Cell Research Community, StemBook, doi:10.3824/stembook.1.46.1.
- Pshenichnaya I, Schouwey K, Armaro M, Larue L, Knoepfler PS, Eisenman RN et al. Constitutive gray hair in mice induced by melanocyte-specific deletion of c-Myc. Pigment Cell Melanoma Res 2012; 25: 312–325.
Article CAS Google Scholar - Steingrimsson E, Copeland NG, Jenkins NA . Melanocyte stem cell maintenance and hair graying. Cell 2005; 121: 9–12.
Article CAS Google Scholar - White RM, Zon LI . Melanocytes in development, regeneration, and cancer. Cell Stem Cell 2008; 3: 242–252.
Article CAS Google Scholar - Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D . Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 2008; 21: 627–645.
Article CAS Google Scholar - Hearing VJ . Determination of melanin synthetic pathways. J Invest Dermatol 2011; 131: E8–E11.
Article Google Scholar - Schiaffino MV . Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol 2010; 42: 1094–1104.
Article CAS Google Scholar - Nishimura EK, Granter SR, Fisher DE . Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 2005; 307: 720–724.
Article CAS Google Scholar - Moriyama M, Osawa M, Mak SS, Ohtsuka T, Yamamoto N, Han H et al. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 2006; 173: 333–339.
Article CAS Google Scholar - Tsao H, Chin L, Garraway LA, Fisher DE . Melanoma: from mutations to medicine. Genes Dev 2012; 26: 1131–1155.
Article CAS Google Scholar - Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18: 1239–1249.
Article CAS Google Scholar - Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 2005; 65: 4005–4011.
Article CAS Google Scholar - Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.
Article CAS Google Scholar - Nazarian RM, Prieto VG, Elder DE, Duncan LM . Melanoma biomarker expression in melanocytic tumor progression: a tissue microarray study. J Cutan Pathol 2010; 37 (Suppl 1): 41–47.
Article Google Scholar - Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367: 1694–1703.
Article CAS Google Scholar - Colone M, Calcabrini A, Toccacieli L, Bozzuto G, Stringaro A, Gentile M et al. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol 2008; 128: 957–971.
Article CAS Google Scholar - Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69: 3429–3456.
Article CAS Google Scholar - Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.
Article CAS Google Scholar - Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.
Article CAS Google Scholar - Sanchez-Martin M, Perez-Losada J, Rodriguez-Garcia A, Gonzalez-Sanchez B, Korf BR, Kuster W et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 2003; 122A: 125–132.
Article Google Scholar - Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002; 100: 1274–1286.
CAS PubMed Google Scholar - Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T . The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998; 198: 277–285.
Article CAS Google Scholar - Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 2005; 37: 1047–1054.
Article CAS Google Scholar - Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I . SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002; 11: 3231–3236.
Article CAS Google Scholar - Shirley SH, Greene VR, Duncan LM, Torres Cabala CA, Grimm EA, Kusewitt DF . Slug expression during melanoma progression. Am J Pathol 2012; 180: 2479–2489.
Article CAS Google Scholar - Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–480.
Article CAS Google Scholar - Vandewalle C, Van Roy F, Berx G . The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 2009; 66: 773–787.
Article CAS Google Scholar - Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G . Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 2012; 69: 2527–2541.
Article CAS Google Scholar - Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–1278.
Article CAS Google Scholar - De Craene BD, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.
Article CAS Google Scholar - Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 2003; 72: 465–470.
Article CAS Google Scholar - Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D . Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet 2007; 16: 1423–1436.
Article CAS Google Scholar - Colombo S, Champeval D, Rambow F, Larue L . Transcriptomic analysis of mouse embryonic skin cells reveals previously unreported genes expressed in melanoblasts. J Invest Dermatol 2012; 132: 170–178.
Article CAS Google Scholar - Delmas V, Martinozzi S, Bourgeois Y, Holzenberger M, Larue L . Cre-mediated recombination in the skin melanocyte lineage. Genesis 2003; 36: 73–80.
Article CAS Google Scholar - Mackenzie MA, Jordan SA, Budd PS, Jackson IJ . Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 1997; 192: 99–107.
Article CAS Google Scholar - Thurber AE, Douglas G, Sturm EC, Zabierowski SE, Smit DJ, Ramakrishnan SN et al. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 2011; 30: 3036–3048.
Article CAS Google Scholar - Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011; 30: 2319–2332.
Article CAS Google Scholar - Chin L, Garraway LA, Fisher DE . Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20: 2149–2182.
Article CAS Google Scholar - Southall TD, Brand AH . Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 2009; 28: 3799–3807.
Article CAS Google Scholar - Xu Y, Brenn T, Brown ER, Doherty V, Melton DW . Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 2012; 106: 553–561.
Article CAS Google Scholar - van Kempen LC, van den Hurk K, Lazar V, Michiels S, Winnepenninckx V, Stas M et al. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch 2012; 461: 441–448.
Article Google Scholar - Higashi Y, Maruhashi M, Nelles L, Van de Putte T, Verschueren K, Miyoshi T et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 2002; 32: 82–84.
Article CAS Google Scholar - Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M et al. Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 2009; 37: e55.
Article Google Scholar - van den Berghe V, Stappers E, Vandesande B, Dimidschstein J, Kroes R, Francis A et al. Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron 2013; 77: 70–82.
Article CAS Google Scholar - Berlin I, Luciani F, Gallagher SJ, Rambow F, Conde-Perez A, Colombo S et al. General strategy to analyse coat colour phenotypes in mice. Pigment Cell Melanoma Res 2012; 25: 117–119.
Article Google Scholar - Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007; 9: 666–674.
Article CAS Google Scholar - Gallagher SJ, Luciani F, Berlin I, Rambow F, Gros G, Champeval D et al. General strategy to analyse melanoma in mice. Pigment Cell Melanoma Res 2012; 24: 987–988.
Article Google Scholar
Acknowledgements
This research was funded by grants from the FWO, the Geconcerteerde Onderzoeksacties of Ghent University, the Stichting tegen Kanker, the Association for International Cancer Research (Scotland), the EU-FP6 framework program BRECOSM LSHC-CT-2004-503224, the EU-FP7 framework programs TuMIC 2008-201662 and Target-Melanoma (www.targetmelanoma.com). Work in the lab of ID was supported by grants from the Ligue National Contre le Cancer, the INCa, the Université de Strasbourg and the ANR. The IGBMC high throughput sequencing facility is a member of the ‘France Génomique’ consortium (ANR10-INBS-09-08). We acknowledge Riet DeRycke for expert electron microscopic analysis, Dr. Amin Bredan for critical reading of the manuscript and the members of our research group for valuable discussions. We thank Professor D Darling for providing the ZEB1 antibody, Professor K Hearing for providing the TYRP1 antibody.
Author contributions
GD, NV, ÖA, DK, JT, KL, AG, BDC, BB, ID, JCM and GB performed the experiments and analyzed the interpreted data. MVG, LB, GMU, MR, WMG, GG, DH, JvdO, LL and JH provided valuable reagents/material. GD and GB conceived-designed the project, analyzed the interpreted data and wrote the paper with inputs particularly from NV, DH, LL, JH, JCM and all other authors.
Author information
Authors and Affiliations
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Ghent, 9052, Belgium
G Denecker, N Vandamme, Ö Akay, J Taminau, A Gheldof, B De Craene & G Berx - Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
G Denecker, N Vandamme, Ö Akay, J Taminau, K Lemeire, A Gheldof, B De Craene, J Haigh & G Berx - Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
D Koludrovic & I Davidson - Department of Dermatology, Ghent University Hospital, Ghent, 9000, Belgium
M Van Gele & L Brochez - UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, 4, Ireland
G M Udupi & W M Gallagher - OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, 4, Ireland
G M Udupi, M Rafferty, B Balint & W M Gallagher - Institute Jules Bordet, Brussels, Belgium
G Ghanem - Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven, 3000, Belgium
D Huylebroeck - Department of Cell Biology, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
D Huylebroeck - Department for Molecular Biomedical Research, Vascular Cell Biology Unit, VIB, Ghent, Belgium
J Haigh - Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
J van den Oord - Curie Institute, Developmental Genetics of Melanocytes, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de la Recherche Médicale (INSERM) U1021, Orsay, France
L Larue - Center for the Biology of Disease, Laboratory for Molecular Cancer Biology, VIB, Leuven, Belgium
J-C Marine - Center for Human Genetics, KU Leuven, Leuven, Belgium
J-C Marine
Authors
- G Denecker
- N Vandamme
- Ö Akay
- D Koludrovic
- J Taminau
- K Lemeire
- A Gheldof
- B De Craene
- M Van Gele
- L Brochez
- G M Udupi
- M Rafferty
- B Balint
- W M Gallagher
- G Ghanem
- D Huylebroeck
- J Haigh
- J van den Oord
- L Larue
- I Davidson
- J-C Marine
- G Berx
Corresponding author
Correspondence toG Berx.
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Edited by G Melino
Supplementary Information accompanies this paper on Cell Death and Differentiation website
Supplementary information
Rights and permissions
About this article
Cite this article
Denecker, G., Vandamme, N., Akay, Ö. et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression.Cell Death Differ 21, 1250–1261 (2014). https://doi.org/10.1038/cdd.2014.44
- Received: 18 September 2013
- Revised: 17 February 2014
- Accepted: 10 March 2014
- Published: 25 April 2014
- Issue date: August 2014
- DOI: https://doi.org/10.1038/cdd.2014.44