Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? (original) (raw)
Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol.7, 131–142 (2006). ArticleCAS Google Scholar
Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). The first comprehensive review to compile evidence for EMT in tumorigenesis. ArticleCAS Google Scholar
Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell127, 679–695 (2006). ArticleCASPubMed Google Scholar
Birchmeier, W. & Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta.1198, 11–26 (1994). CASPubMed Google Scholar
Peinado, H. & Cano, A. New potential therapeutic targets to combat epithelial tumor invasion. Clin. Transl. Oncol.8, 851–857 (2006). ArticleCASPubMed Google Scholar
Tarin, D., Thompson, E. W. & Newgreen, D. F. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res.65, 5996–6000 (2005). ArticleCASPubMed Google Scholar
Christiansen, J. J. & Rajasekaran, A. K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res.66, 8319–8326 (2006). ArticleCASPubMed Google Scholar
Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development132, 3151–3161 (2005). An excellent review of the implication of Snail factors in processes other than EMT. ArticleCASPubMed Google Scholar
Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol.2, 84–89 (2000). ArticleCASPubMed Google Scholar
Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol.2, 76–83 (2000). Together with reference 9, characterizes SNAI1 as the first E-cadherin repressor and EMT inducer in carcinoma cells. ArticleCASPubMed Google Scholar
Bolos, V. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci.116, 499–511 (2003). ArticleCASPubMed Google Scholar
Hajra, K. M., Chen, D. Y. & Fearon, E. R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res.62, 1613–1618 (2002). CASPubMed Google Scholar
Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell7, 1267–1278 (2001). ArticleCASPubMed Google Scholar
Eger, A. et al. dEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene24, 2375–2385 (2005). ArticleCASPubMed Google Scholar
Perez-Moreno, M. A. et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J. Biol. Chem.276, 27424–27431 (2001). ArticleCASPubMed Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939 (2004). The first demonstration of the capability of TWIST to induce EMT and metastasis. ArticleCASPubMed Google Scholar
Nieto, M. A. The snail superfamily of zinc-finger transcription factors. Nature Rev. Mol. Cell Biol.3, 155–166 (2002). ArticleCAS Google Scholar
De Craene, B., van Roy, F. & Berx, G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal.17, 535–547 (2005). ArticleCASPubMed Google Scholar
Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol.17, 548–558 (2005). ArticleCASPubMed Google Scholar
Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell4, 499–515 (2003). ArticleCASPubMed Google Scholar
Barbera, M. J. et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene23, 7345–7354 (2004). ArticleCASPubMed Google Scholar
Peinado, H., Quintanilla, M. & Cano, A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem.278, 21113–21123 (2003). ArticleCASPubMed Google Scholar
Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev.18, 99–115 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J.23, 1155–1165 (2004). ArticleCASPubMedPubMed Central Google Scholar
Medici, D., Hay, E. D. & Goodenough, D. A. Cooperation between snail and LEF-1 transcription factors is essential for TGF-β1-induced epithelial-mesenchymal transition. Mol. Biol. Cell17, 1871–1879 (2006). ArticleCASPubMedPubMed Central Google Scholar
Conacci-Sorrell, M. et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of β-catenin signaling, Slug, and MAPK. J. Cell Biol.163, 847–857 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sakai, D., Suzuki, T., Osumi, N. & Wakamatsu, Y. Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development133, 1323–1333 (2006). ArticleCASPubMed Google Scholar
Vallin, J. et al. Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/β-catenin signaling. J. Biol. Chem.276, 30350–30358 (2001). ArticleCASPubMed Google Scholar
Thuault, S. et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J. Cell Biol.174, 175–183 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mann, J. R. et al. Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Res.66, 6649–6656 (2006). ArticleCASPubMed Google Scholar
Dohadwala, M. et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res.66, 5338–5345 (2006). ArticleCASPubMed Google Scholar
Rosano, L. et al. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res.65, 11649–11657 (2005). ArticleCASPubMed Google Scholar
Yang, A. D. et al. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res.66, 46–51 (2006). ArticleCASPubMed Google Scholar
Tsutsumi, S., Yanagawa, T., Shimura, T., Kuwano, H. & Raz, A. Autocrine motility factor signaling enhances pancreatic cancer metastasis. Clin. Cancer Res.10, 7775–7784 (2004). ArticleCASPubMed Google Scholar
Perez-Losada, J. et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood100, 1274–1286 (2002). CASPubMed Google Scholar
Wang, Z. et al. Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene26, 1222–1230 (2007). ArticleCASPubMed Google Scholar
Hayashida, Y. et al. Calreticulin represses E-cadherin gene expression in Madin-Darby canine kidney cells via Slug. J. Biol. Chem.281, 32469–32484 (2006). ArticleCASPubMed Google Scholar
Evans, A. J. et al. VHL Promotes E2 Box-dependent E-cadherin Transcription by HIF-mediated Regulation of SIP1 and Snail. Mol. Cell Biol. (2006).
Giannelli, G., Bergamini, C., Fransvea, E., Sgarra, C. & Antonaci, S. Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology129, 1375–1383 (2005). ArticleCASPubMed Google Scholar
Chen, M., Chen, L. M. & Chai, K. X. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate66, 911–920 (2006). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell113, 207–219 (2003). Demonstration of the link between MTA3 and ligated ER with the negative regulation of Snail expression in breast carcinoma cells. ArticleCASPubMed Google Scholar
Dillner, N. B. & Sanders, M. M. Transcriptional activation by the zinc-finger homeodomain protein d EF1 in estrogen signaling cascades. DNA Cell Biol.23, 25–34 (2004). ArticleCASPubMed Google Scholar
Peiro, S. et al. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res.34, 2077–2084 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sakai, D. et al. Regulation of Slug transcription in embryonic ectoderm by β-catenin-Lef/Tcf and BMP-Smad signaling. Dev. Growth Differ.47, 471–482 (2005). ArticleCASPubMed Google Scholar
Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. & Mercurio, A. M. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J. Cell Biol.168, 29–33 (2005). ArticleCASPubMedPubMed Central Google Scholar
Grotegut, S., von Schweinitz, D., Christofori, G. & Lehembre, F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J.25, 3534–3545 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hemavathy, K., Ashraf, S. I. & Ip, Y. T. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene257, 1–12 (2000). ArticleCASPubMed Google Scholar
Perk, J., Iavarone, A. & Benezra, R. Id family of helix-loop-helix proteins in cancer. Nature Rev. Cancer5, 603–614 (2005). An excellent review of the implication of Id proteins in cancer. ArticleCAS Google Scholar
Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol.13, 410–418 (2003). ArticleCASPubMed Google Scholar
Peinado, H. & Cano, A. Regulation of the E-cadherin Cell-Cell Adhesion Gene in DNA methylation, epigenetics and metastasis, 157–190 (ed. Esteller, M.) (Springer, 2005). Book Google Scholar
Peinado, H., Portillo, F. & Cano, A. Transcriptional regulation of cadherins during development and carcinogenesis. Int. J. Dev. Biol.48, 365–375 (2004). ArticleCASPubMed Google Scholar
Hemavathy, K., Guru, S. C., Harris, J., Chen, J. D. & Ip, Y. T. Human Slug is a repressor that localizes to sites of active transcription. Mol. Cell Biol.20, 5087–5095 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol.24, 306–319 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tripathi, M. K. et al. Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J. Biol. Chem.280, 17163–17171 (2005). ArticleCASPubMed Google Scholar
Bailey, C. K., Misra, S., Mittal, M. K. & Chaudhuri, G. Human SLUG does not directly bind to CtBP1. Biochem. Biophys. Res. Commun.353, 661–664 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature422, 735–738 (2003). ArticleCASPubMed Google Scholar
van Grunsven, L. A. et al. Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J. Biol. Chem.278, 26135–26145 (2003). ArticleCASPubMed Google Scholar
Pena, C. et al. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int. J. Cancer119, 2098–2104 (2006). ArticleCASPubMed Google Scholar
Postigo, A. A., Depp, J. L., Taylor, J. J. & Kroll, K. L. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J.22, 2453–2462 (2003). ArticleCASPubMedPubMed Central Google Scholar
Alpatov, R. et al. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol. Cell Biol.24, 10223–10235 (2004). ArticleCASPubMedPubMed Central Google Scholar
Long, J., Zuo, D. & Park, M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J. Biol. Chem.280, 35477–35489 (2005). ArticleCASPubMed Google Scholar
Zhao, L. J., Subramanian, T., Zhou, Y. & Chinnadurai, G. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J. Biol. Chem.281, 4183–4189 (2006). ArticleCASPubMed Google Scholar
Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science295, 1895–1897 (2002). CASPubMed Google Scholar
Kondo, M. et al. A role for Id in the regulation of TGFβ-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ.11, 1092–1101 (2004). ArticleCASPubMed Google Scholar
Dominguez, D. et al. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell Biol.23, 5078–5089 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, Z. et al. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res.65, 3179–3184 (2005). ArticleCASPubMed Google Scholar
Yamashita, S. et al. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature429, 298–302 (2004). ArticleCASPubMed Google Scholar
Zhou, B. P. et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature Cell Biol.6, 931–940 (2004). Pioneering study that showed the post-transcriptional regulation of SNAI1 subcellular localization and stability by GSK3β kinase. ArticleCASPubMed Google Scholar
Yook, J. I. et al. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biol.8, 1398–1406 (2006). ArticleCASPubMed Google Scholar
Peinado, H. et al. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J.24, 3446–3458 (2005). Showed for the first time that LOXL2 and/or LOXL3 regulate SNAI1 protein stability and functional activity. ArticleCASPubMedPubMed Central Google Scholar
Peinado, H., Portillo, F. & Cano, A. Switching on-off Snail: LOXL2 versus GSK3β. Cell Cycle4, 1749–1752 (2005). ArticleCASPubMed Google Scholar
Vernon, A. E. & Labonne, C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development133, 3359–3370 (2006). ArticleCASPubMed Google Scholar
Lluis, F., Ballestar, E., Suelves, M., Esteller, M. & Munoz-Canoves, P. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J.24, 974–984 (2005). ArticleCASPubMedPubMed Central Google Scholar
Neufeld, B. et al. Serine/Threonine kinases 3pK and MAPK-activated protein kinase 2 interact with the basic helix-loop-helix transcription factor E47 and repress its transcriptional activity. J. Biol. Chem.275, 20239–20242 (2000). ArticleCASPubMed Google Scholar
Chu, C. & Kohtz, D. S. Identification of the E2A gene products as regulatory targets of the G1 cyclin-dependent kinases. J. Biol. Chem.276, 8524–8534 (2001). ArticleCASPubMed Google Scholar
Nie, L., Xu, M., Vladimirova, A. & Sun, X. H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J.22, 5780–5792 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moreno-Bueno, G. et al. Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug, and e47 factors in epithelial-mesenchymal transition. Cancer Res.66, 9543–9556 (2006). ArticleCASPubMed Google Scholar
Bermejo-Rodriguez, C. et al. Mouse cDNA microarray analysis uncovers Slug targets in mouse embryonic fibroblasts. Genomics87, 113–118 (2006). ArticleCASPubMed Google Scholar
Vandewalle, C. et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res.33, 6566–6578 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cicchini, C. et al. Snail controls differentiation of hepatocytes by repressing HNF4a expression. J. Cell Physiol.209, 230–238 (2006). ArticleCASPubMed Google Scholar
De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res.65, 6237–6244 (2005). ArticleCASPubMed Google Scholar
Palmer, H. G. et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Med.10, 917–919 (2004). ArticleCASPubMed Google Scholar
Kajita, M., McClinic, K. N. & Wade, P. A. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol. Cell Biol.24, 7559–7566 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, W. S. et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell123, 641–653 (2005). ArticleCASPubMed Google Scholar
Espineda, C. E., Chang, J. H., Twiss, J., Rajasekaran, S. A. & Rajasekaran, A. K. Repression of Na, K-ATPase β1-subunit by the transcription factor snail in carcinoma. Mol. Biol. Cell.15, 1364–1373 (2004). ArticleCASPubMedPubMed Central Google Scholar
Park, J. H. et al. The zinc-finger transcription factor Snail downregulates proliferating cell nuclear antigen expression in colorectal carcinoma cells. Int. J. Oncol.26, 1541–1547 (2005). CASPubMed Google Scholar
Takeuchi, T., Adachi, Y., Sonobe, H., Furihata, M. & Ohtsuki, Y. A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion. Oncogene25, 7059–7069 (2006). ArticleCASPubMed Google Scholar
Seki, K. et al. Mouse Snail family transcription repressors regulate chondrocyte, extracellular matrix, type II collagen, and aggrecan. J. Biol. Chem.278, 41862–41870 (2003). ArticleCASPubMed Google Scholar
Turner, F. E. et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J. Biol. Chem.281, 21321–21331 (2006). ArticleCASPubMed Google Scholar
Takahashi, E. et al. Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochem. Biophys. Res. Commun.325, 1136–1144 (2004). ArticleCASPubMed Google Scholar
Guaita, S. et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J. Biol. Chem.277, 39209–39216 (2002). ArticleCASPubMed Google Scholar
Yoshimoto, A., Saigou, Y., Higashi, Y. & Kondoh, H. Regulation of ocular lens development by Smad-interacting protein 1 involving Foxe3 activation. Development132, 4437–4448 (2005). ArticleCASPubMed Google Scholar
Alexander, N. R. et al. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res.66, 3365–3369 (2006). ArticleCASPubMed Google Scholar
Zheng, W., Wang, H., Xue, L., Zhang, Z. & Tong, T. Regulation of cellular senescence and p16(INK4a) expression by Id1 and E47 proteins in human diploid fibroblast. J. Biol. Chem.279, 31524–31532 (2004). ArticleCASPubMed Google Scholar
Kumar, M. S., Hendrix, J. A., Johnson, A. D. & Owens, G. K. Smooth muscle α-actin gene requires two E-boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins. Circ. Res.92, 840–847 (2003). ArticleCASPubMed Google Scholar
Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M. & Kamata, N. Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Int. J. Oncol.28, 487–496 (2006). CASPubMed Google Scholar
Jorda, M. et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J. Cell Sci.118, 3371–3385 (2005). ArticleCASPubMed Google Scholar
Remacle, J. E. et al. New mode of DNA binding of multi-zinc finger transcription factors: dEF1 family members bind with two hands to two target sites. EMBO J.18, 5073–5084 (1999). ArticleCASPubMedPubMed Central Google Scholar
Blanco, M. J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene21, 3241–3246 (2002). ArticleCASPubMed Google Scholar
Cheng, C. W. et al. Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene20, 3814–3823 (2001). First indication that transcriptional repression mechanisms have a dynamic role in E-cadherin downregulation. ArticleCASPubMed Google Scholar
Come, C. et al. Snail and slug play distinct roles during breast carcinoma progression. Clin. Cancer Res.12, 5395–5402 (2006). ArticleCASPubMed Google Scholar
Elloul, S. et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer103, 1631–1643 (2005). ArticleCASPubMed Google Scholar
Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell8, 197–209 (2005). First implication of SNAI1 in breast cancer recurrence. ArticleCASPubMed Google Scholar
Martin, T. A., Goyal, A., Watkins, G. & Jiang, W. G. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol.12, 488–496 (2005). ArticlePubMed Google Scholar
Elloul, S. et al. Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch.449, 520–528 (2006). ArticleCASPubMed Google Scholar
Pena, C. et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum. Mol. Genet.14, 3361–3370 (2005). ArticleCASPubMed Google Scholar
Gonzalez-Sancho, J. M., Larriba, M. J., Ordonez-Moran, P., Palmer, H. G. & Muñoz, A. Effects of 1α, 25-dihydroxyvitamin D3 in human colon cancer cells. Anticancer Res.26, 2669–2681 (2006). CASPubMed Google Scholar
Roy, H. K., Smyrk, T. C., Koetsier, J., Victor, T. A. & Wali, R. K. The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig. Dis. Sci.50, 42–46 (2005). ArticleCASPubMed Google Scholar
Shioiri, M. et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer94, 1816–1822 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rosivatz, E. et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am. J. Pathol.161, 1881–1891 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rosivatz, E. et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch.448, 277–287 (2006). ArticleCASPubMed Google Scholar
Takeno, S. et al. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snail overexpression, and clinicopathologic implications. Am. J. Clin. Pathol.122, 78–84 (2004). ArticleCASPubMed Google Scholar
Yang, M. H. et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Clin. Cancer Res.12, 507–515 (2006). ArticleCASPubMed Google Scholar
Yokoyama, K. et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int. J. Oncol.22, 891–898 (2003). CASPubMed Google Scholar
Miyoshi, A. et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br. J. Cancer92, 252–258 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sugimachi, K. et al. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin. Cancer Res.9, 2657–2664 (2003). CASPubMed Google Scholar
Uchikado, Y. et al. Slug expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin. Cancer Res.11, 1174–1180 (2005). CASPubMed Google Scholar
Shih, J. Y. et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin. Cancer Res.11, 8070–8078 (2005). ArticleCASPubMed Google Scholar
Sivertsen, S. et al. Expression of Snail, Slug and SIP1 in malignant mesothelioma effusions is associated with matrix metalloproteinase, but not with cadherin expression. Lung Cancer54, 309–317 (2006). ArticlePubMed Google Scholar
Saito, T. et al. E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma. Oncogene23, 8629–8638 (2004). ArticleCASPubMed Google Scholar
Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet.37, 1047–1054 (2005). ArticleCASPubMed Google Scholar
Locascio, A., Vega, S., de Frutos, C. A., Manzanares, M. & Nieto, M. A. Biological potential of a functional human SNAIL retrogene. J. Biol. Chem.277, 38803–38809 (2002). ArticleCASPubMed Google Scholar
Franci, C. et al. Expression of Snail protein in tumor-stroma interface. Oncogene25, 5134–5144 (2006). The first studty to show a reliable expression of SNAI1 by immunohistochemistry in human tumours. ArticleCASPubMed Google Scholar
Maeda, G. et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int. J. Oncol.27, 1535–1541 (2005). CASPubMed Google Scholar
Imamichi, Y., Konig, A., Gress, T. & Menke, A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene26, 2381–2385 (2007). ArticleCASPubMed Google Scholar
Spoelstra, N. S. et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res.66, 3893–3902 (2006). ArticleCASPubMed Google Scholar
Mironchik, Y. et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res.65, 10801–10809 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sarrio, D. et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int. J. Cancer106, 208–215 (2003). ArticleCASPubMed Google Scholar
Kwok, W. K. et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res.65, 5153–5162 (2005). ArticleCASPubMed Google Scholar
Yuen, H. F. et al. Up-regulation of TWIST in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J. Clin. Pathol. August 2006 (doi: 10.1036/jcp2006.039099).
Lee, T. K. et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin. Cancer Res.12, 5369–5376 (2006). ArticleCASPubMed Google Scholar
Kyo, S. et al. High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum. Pathol.37, 431–438 (2006). ArticleCASPubMed Google Scholar
Hoek, K. et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res.64, 5270–5282 (2004). ArticleCASPubMed Google Scholar
Perk, J. et al. Reassessment of id1 protein expression in human mammary, prostate, and bladder cancers using a monospecific rabbit monoclonal anti-id1 antibody. Cancer Res.66, 10870–10877 (2006). ArticleCASPubMed Google Scholar
Olmeda, D., Jorda, M., Peinado, H., Fabra, A. & Cano, A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene26, 1862–1874 (2007). ArticleCASPubMed Google Scholar
Jamora, C. et al. A signaling pathway involving TGFβ2 and Snail in hair follicle morphogenesis. PLoS Biol.3, e11 (2005). ArticlePubMedCAS Google Scholar
Metzstein, M. M. & Horvitz, H. R. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol. Cell4, 309–319 (1999). ArticleCASPubMed Google Scholar
Inukai, T. et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol. Cell4, 343–352 (1999). ArticleCASPubMed Google Scholar
Inoue, A. et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell2, 279–288 (2002). Functional characterization of the role of SNAI2 in the survival of haematological precursor cells. ArticlePubMed Google Scholar
Perez-Losada, J., Sanchez-Martin, M., Perez-Caro, M., Perez-Mancera, P. A. & Sanchez-Garcia, I. The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene22, 4205–4211 (2003). ArticleCASPubMed Google Scholar
Catalano, A., Rodilossi, S., Rippo, M. R., Caprari, P. & Procopio, A. Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J. Biol. Chem.279, 46706–46714 (2004). ArticleCASPubMed Google Scholar
Puisieux, A., Valsesia-Wittmann, S. & Ansieau, S. A twist for survival and cancer progression. Br. J. Cancer.94, 13–17 (2006). ArticleCASPubMed Google Scholar
Wang, X. et al. Identification of a novel function of Twist, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene23, 474–482 (2004). ArticlePubMedCAS Google Scholar
Gyorffy, A. et al. Comparative promoter analysis of doxorubicin resistance-associated genes suggests E47 as a key regulatory element. Anticancer Res.26, 2971–2976 (2006). CASPubMed Google Scholar
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells- an integrated concept of malignant tumour progression. Nature Rev. Cancer5, 744–749 (2005). ArticleCAS Google Scholar
Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell. Dev. Biol.22, 287–309 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zi, X. et al. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res.65, 9762–9770 (2005). ArticleCASPubMed Google Scholar
Chua, H. L. et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene26, 711–724 (2007). ArticleCASPubMed Google Scholar
Peinado, H. et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J. Cell Sci.117, 2827–2839 (2004). ArticleCASPubMed Google Scholar
Takkunen, M. et al. Snail-dependent and-independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J. Histochem Cytochem.54, 1263–1275 (2006). ArticleCASPubMed Google Scholar
Martinez-Estrada, O. M. et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem. J.394, 449–457 (2006). ArticleCASPubMedPubMed Central Google Scholar
Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer3, 362–374 (2003). ArticleCAS Google Scholar
Savagner, P. et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J. Cell Physiol.202, 858–866 (2005). ArticleCASPubMed Google Scholar
Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene24, 5764–5774 (2005). ArticleCASPubMed Google Scholar
Esteban, M. A. et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res.66, 3567–3575 (2006). ArticleCASPubMed Google Scholar
Krishnamachary, B. et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res.66, 2725–2731 (2006). ArticleCASPubMed Google Scholar
Kurrey, N. K., K, A. & Bapat, S. A. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol. Oncol.97, 155–165 (2005). ArticleCASPubMed Google Scholar
Imai, T. et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am. J. Pathol.163, 1437–1447 (2003). ArticleCASPubMedPubMed Central Google Scholar
Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature440, 1222–1226 (2006). ArticleCASPubMed Google Scholar
Pouyssegur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature441, 437–443 (2006). This study, together with reference 164, reflects the influence of the tumour microenvironment on the regulation of LOX proteins to promote tumour metastasis. ArticleCASPubMed Google Scholar
Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell Biol.21, 8184–8188 (2001). ArticleCASPubMedPubMed Central Google Scholar
Murray, S. A. & Gridley, T. Snail family genes are required for left-right asymmetry determination, but not neural crest formation, in mice. Proc. Natl Acad. Sci. USA103, 10300–10304 (2006). ArticleCASPubMedPubMed Central Google Scholar
Postigo, A. A. & Dean, D. C. Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc. Natl Acad. Sci. USA97, 6391–6396 (2000). ArticleCASPubMedPubMed Central Google Scholar
Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet.72, 465–470 (2003). ArticleCASPubMedPubMed Central Google Scholar
Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell Biol.20, 429–440 (2000). A comprehensive review of the bHLH family of proteins. ArticleCASPubMedPubMed Central Google Scholar
Ellenberger, T., Fass, D., Arnaud, M. & Harrison, S. C. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev.8, 970–980 (1994). ArticleCASPubMed Google Scholar
Quong, M. W., Massari, M. E., Zwart, R. & Murre, C. A new transcriptional-activation motif restricted to a class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol. Cell Biol.13, 792–800 (1993). ArticleCASPubMedPubMed Central Google Scholar
Chen, J., Yusuf, I., Andersen, H. M. & Fruman, D. A. FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. J. Immunol.176, 2711–2721 (2006). ArticleCASPubMed Google Scholar