Ito M, Kobayashi K, Nakahata T . NOD/Shi-scid IL2rγnull (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324: 53–76. CASPubMed Google Scholar
Legrand N, Weijer K, Spits H . Experimental models to study development and function of the human immune system in vivo. J Immunol 2006; 176: 2053–2058. CASPubMed Google Scholar
Zhang B, Duan Z, Zhao Y . Mouse models with human immunity and their application in biomedical research. J Cell Mol Med 2009; 13: 1043–1058. CASPubMed Google Scholar
Issacson J, Cattanach B . Report. Mouse News Lett 1962; 27: 31. Google Scholar
Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530. CASPubMed Google Scholar
Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191. CASPubMed Google Scholar
Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T et al. High levels of viremia in _hu_-PBL-NOD-scid mice with HIV-1 infection. Leukemia 1 1997; Suppl 3, 109–112.
Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB et al. Enhanced human CD4+ T cell engraftment in β2-microglobulin-deficient NOD-scid mice. J Immunol 1997; 158: 3578–3586. CASPubMed Google Scholar
Shultz LD, Banuelos S, Lyons B, Samuels R, Burzenski L, Gott B et al. NOD/LtSz-Rag1nullPfpnull mice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment. Transplantation 2003; 76: 1036–1042. PubMed Google Scholar
Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182. CASPubMed Google Scholar
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489. CASPubMed Google Scholar
Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ . Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–342. CASPubMed Google Scholar
Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107. CASPubMed Google Scholar
Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1null) interleukin (IL)-2 receptor common gamma chain (IL2rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154: 270–284. CASPubMedPubMed Central Google Scholar
Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135: 84–98. CASPubMedPubMed Central Google Scholar
Yahata T, Ando K, Nakamura Y, Ueyama Y, Shimamura K, Tamaoki N et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor γnull mice. J Immunol 2002; 169: 204–209. CASPubMed Google Scholar
Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 2003; 102: 873–880. CASPubMed Google Scholar
Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B et al. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 2006; 20: 950–952. CASPubMed Google Scholar
Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327. CASPubMed Google Scholar
Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106: 1565–1573. CASPubMedPubMed Central Google Scholar
Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/γc−/−, Balb/c-Rag1−/−γc−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 2009; 70: 790–802. CASPubMedPubMed Central Google Scholar
Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R et al. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/γcnull (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol 2003; 31: 789–797. PubMed Google Scholar
Hayakawa J, Hsieh MM, Uchida N, Phang O, Tisdale JF . Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rγnull mice. Stem Cells 2009; 27: 175–182. CASPubMedPubMed Central Google Scholar
Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol 2009; 21: 843–858. CASPubMed Google Scholar
McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B et al. The _SCID_-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 1991; 9: 399–429. CASPubMed Google Scholar
McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639. CASPubMed Google Scholar
Kirberg J, Berns A, von Boehmer H . Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 1997; 186: 1269–1275. CASPubMedPubMed Central Google Scholar
Custer RP, Bosma GC, Bosma MJ . Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 1985; 120: 464–477. CASPubMedPubMed Central Google Scholar
Bosma MJ . B and T cell leakiness in the scid mouse mutant. Immunodefic Rev 1992; 3: 261–276. CASPubMed Google Scholar
Kato C, Fujii E, Chen YJ, Endaya BB, Matsubara K, Suzuki M et al. Spontaneous thymic lymphomas in the non-obese diabetic/Shi-scid, IL-2Rγnull mouse. Lab Anim 2009; 43: 402–404. CASPubMed Google Scholar
Katano I, Ito R, Eto T, Aiso S, Ito M . Immunodeficient NOD-scid IL-2Rγnull mice do not display T and B cell leakiness. Exp Anim 2011; 60: 181–186. CASPubMed Google Scholar
Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14: 179–205. CASPubMed Google Scholar
Okada S, Harada H, Ito T, Saito T, Suzu S . Early development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cells. Int J Hematol 2008; 88: 476–482. PubMed Google Scholar
Sato Y, Takata H, Kobayashi N, Nagata S, Nakagata N, Ueno T et al. Failure of effector function of human CD8+ T cells in NOD/SCID/JAK3/ immunodeficient mice transplanted with human CD34+ hematopoietic stem cells. PLoS One 2010; 5: e13109. PubMedPubMed Central Google Scholar
Miyakawa Y, Fukuchi Y, Ito M, Kobayashi K, Kuramochi T, Ikeda Y et al. Establishment of human granulocyte–macrophage colony stimulating factor produing transgenic SCID mice. Br J Haematol 1996; 95: 437–442. CASPubMed Google Scholar
Fukuchi Y, Miyakawa Y, Kobayashi K, Kuramochi T, Shimamura K, Tamaoki N et al. Cytokine dependent growth of human TF-1 leukemic cell line in human GM-CSF and IL-3 producing transgenic SCID mice. Leuk Res 1998; 22: 837–843. CASPubMed Google Scholar
Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313–1323. CASPubMed Google Scholar
Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383. CASPubMedPubMed Central Google Scholar
Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390–2395. CASPubMedPubMed Central Google Scholar
Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027. CASPubMedPubMed Central Google Scholar
Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 2011; 6: e19826. CASPubMedPubMed Central Google Scholar
Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 2003; 102: 873–880. CASPubMed Google Scholar
Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H et al. T cell-mediated control of Epstein–Barr virus infection in humanized mice. J Infect Dis 2009; 200: 1611–1615. CASPubMed Google Scholar
Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027. CASPubMedPubMed Central Google Scholar
Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 2009; 206: 1423–1434. PubMedPubMed Central Google Scholar
Suwanai H, Wilcox MA, Mathis D, Benoist C . A defective Il15 allele underlies the deficiency in natural killer cell activity in nonobese diabetic mice. Proc Natl Acad Sci USA 01; 107: 9305–9310. CAS Google Scholar
Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34. CASPubMedPubMed Central Google Scholar
Chen Q, Khoury M, Chen J . Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 2009; 106: 21783–21788. CASPubMedPubMed Central Google Scholar
Shiokawa M, Takahashi T, Murakami A, Kita S, Ito M, Sugamura K et al. In vivo assay of human NK-dependent ADCC using NOD/SCID/γcnull (NOG) mice. Biochem Biophys Res Commun 2010; 399: 733–737. CASPubMed Google Scholar
Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A . Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocytenmacrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011; 117: 3076–3086. CASPubMedPubMed Central Google Scholar
Williams CM, Galli SJ . The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 2000; 105: 847–859. CASPubMed Google Scholar
Galli SJ, Wershil BK . The two faces of the mast cell. Nature 1996; 381: 21–22. CASPubMed Google Scholar
Kambe N, Hiramatsu H, Shimonaka M, Fujino H, Nishikomori R, Heike T et al. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body. Blood 2004; 103: 860–867. CASPubMed Google Scholar
Machida K, Suemizu H, Kawai K, Ishikawa T, Sawada R, Ohnishi Y et al. Higher susceptibility of NOG mice to xenotransplanted tumors. J Toxicol Sci 2009; 34: 123–127. PubMed Google Scholar
Suemizu H, Monnai M, Ohnishi Y, Ito M, Tamaoki N, Nakamura M . Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/γcnull (NOG) mice. Int J Oncol 2007; 31: 741–751. CASPubMed Google Scholar
Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y et al. Establishment of a new model of human multiple myeloma using NOD/SCID/γcnull (NOG) mice. Biochem Biophys Res Commun 2004; 313: 258–262. CASPubMed Google Scholar
Ninomiya M, Kiyoi H, Ito M, Hirose Y, Naoe T . Retinoic acid syndrome in NOD/scid mice induced by injecting an acute promyelocytic leukemia cell line. Leukemia 2004; 18: 442–448. CASPubMed Google Scholar
Ito R, Katano I, Kawai K, Hirata H, Ogura T, Kamisako T et al. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 2009; 87: 1654–1658. CASPubMed Google Scholar
Zhang L, Meissner E, Chen J, Su L . Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci China Life Sci 2010; 53: 195–203. CASPubMedPubMed Central Google Scholar
Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM . Infection of the SCID-hu mouse by HIV-1. Science 1988; 242: 1684–1686. CASPubMed Google Scholar
Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259. CASPubMed Google Scholar
Koyanagi Y, Tanaka Y, Ito M, Yamamoto N . Humanized mice for human retrovirus infection. Curr Top Microbiol Immunol 2008; 324: 133–148. CASPubMed Google Scholar
Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y . Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rγnull mice infected with CCR5-tropic HIV-1. Vaccine 8 2010; Suppl 2, B32–37. CASPubMed Google Scholar
Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H et al. Humanized NOD/SCID/IL2Rγnull mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 2007; 81: 13259–13264. CASPubMedPubMed Central Google Scholar
Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2007; 109: 212–218. CASPubMed Google Scholar
Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008; 5: e16. PubMedPubMed Central Google Scholar
Olesen R, Wahl A, Denton PW, Garcia JV . Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod Immunol 2011; 88: 195–203. CASPubMedPubMed Central Google Scholar
Choudhary S, Archin N, Cheema M, Dahl N, Garcia JV, Margolis D . Latent HIV-1 infection of resting CD4+ T cells in the humanized Rag2−/−γc−/− mouse. J Virol 2012; 86: 114–120. CASPubMedPubMed Central Google Scholar
Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H et al. A new humanized mouse model of Epstein–Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 2008; 198: 673–682. CASPubMed Google Scholar
Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M et al. A novel animal model of Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 2011; 117: 5663–5673. CASPubMed Google Scholar
Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S et al. Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog 2011; 7: e1002326. CASPubMedPubMed Central Google Scholar
Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010; 8: 369–376. CASPubMedPubMed Central Google Scholar
Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD et al. Humanized nonobese diabetic-scid IL2rγnull mice are susceptible to lethal Salmonella typhi infection. Proc Natl Acad Sci USA 2010; 107: 15589–15594. CASPubMedPubMed Central Google Scholar
Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA . Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 2011; 8: 83–87. CASPubMed Google Scholar
Sauerwein RW, Roestenberg M, Moorthy VS . Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol 2011; 11: 57–64. CASPubMed Google Scholar
Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 2007; 25: 903–910. CASPubMedPubMed Central Google Scholar
Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405: 405–410. CASPubMedPubMed Central Google Scholar
Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7: 927–933. CASPubMed Google Scholar
Suemizu H, Hasegawa M, Kawai K, Taniguchi K, Monnai M, Wakui M et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun 2008; 377: 248–252. CASPubMed Google Scholar
Mikolajczak SA, Sacci JB Jr, de la Vega P, Camargo N, VanBuskirk K, Krzych U et al. Disruption of the Plasmodium falciparum liver-stage antigen-1 locus causes a differentiation defect in late liver-stage parasites. Cell Microbiol 2011; 13: 1250–1260. CASPubMedPubMed Central Google Scholar
Jimenez-Diaz MB, Mulet T, Viera S, Gomez V, Garuti H, Ibanez J et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rγnull mice engrafted with human erythrocytes. Antimicrob Agents Chemother 2009; 53: 4533–4536. CASPubMedPubMed Central Google Scholar
Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, Chisari FV et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 2010; 120: 924–930. CASPubMedPubMed Central Google Scholar
Haridass D, Yuan Q, Becker PD, Cantz T, Iken M, Rothe M et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 2009; 175: 1483–1492. CASPubMedPubMed Central Google Scholar
Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011; 140: 1334–1344. CASPubMed Google Scholar
Martino G, Anastasi J, Feng J, Mc Shan C, DeGroot L, Quintans J et al. The fate of human peripheral blood lymphocytes after transplantation into SCID mice. Eur J Immunol 1993; 23: 1023–1028. CASPubMed Google Scholar
van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− γc−/− double-mutant mice. Blood 2003; 102: 2522–2531. CASPubMed Google Scholar
King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157: 104–118. CASPubMedPubMed Central Google Scholar