Caplan AI . Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213: 341–347. ArticleCASPubMed Google Scholar
Cohnheim J . Ueber Entzündung und Eiterung. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 1867; 40: 1–79. Google Scholar
Maximow A . Relation of blood cells to connective tissues and endothelium. Physiol Rev 1924; 4: 533–563. Article Google Scholar
Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV . Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390. CASPubMed Google Scholar
Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV . Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 1974; 17: 331–340. ArticleCASPubMed Google Scholar
Friedenstein AJ, Gorskaja JF, Kulagina NN . Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267–274. CASPubMed Google Scholar
Owen M . The marrow stromal cell system. In: Beresford J, Owen M, (eds). Marrow Stromal Cell Culture. Cambridge University Press: New York, 1988 pp 1–9. Google Scholar
Owen M, Friedenstein AJ . Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42–60. CASPubMed Google Scholar
Owen M . Lineage of osteogenic cells and their relationship to the stromal system. J Bone Miner Res 1985; 3: 1–25. Google Scholar
Goshima J, Goldberg V, Caplan A . The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res 1991; 262: 298–311. Google Scholar
Haynesworth S, Baber M, Caplan A . Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69–80. ArticleCASPubMed Google Scholar
Haynesworth S, Goshima J, Goldberg V, Caplan A . Characterization of cells with osteogenic potential from human bone marrow. Bone 1992; 13: 81–88. ArticleCASPubMed Google Scholar
Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301–313. ArticleCASPubMed Google Scholar
Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102: 77–85. ArticleCASPubMed Google Scholar
Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD . Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 2013; 83: 134–140. ArticleCASPubMed Google Scholar
Da Silva Meirelles L, Chagastelles PC, Nardi NB . Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119: 2204–2213. ArticleCASPubMed Google Scholar
Da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI . MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 2009; 15: 221–229. ArticleCASPubMed Google Scholar
Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324–336. ArticleCASPubMed Google Scholar
Bianco P, Costantini M, Dearden LC, Bonucci E . Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol 1988; 68: 401–403. ArticleCASPubMed Google Scholar
Bianco P, Riminucci M, Kuznetsov S, Robey PG . Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit Rev Eukaryot Gene Expr 1999; 9: 159–173. ArticleCASPubMed Google Scholar
Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104: 1410–1420. ArticleCASPubMed Google Scholar
Jones E, McGonagle D . Human bone marrow mesenchymal stem cells in vivo. Rheumatology 2008; 47: 126–131. ArticleCASPubMed Google Scholar
Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106: 419–427. ArticleCASPubMed Google Scholar
Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041. ArticleCASPubMed Google Scholar
Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J et al. Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15: 862–870. ArticleCASPubMedPubMed Central Google Scholar
Haynesworth SE, Baber MA, Caplan AI . Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585–592. ArticleCASPubMed Google Scholar
Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL . Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000; 105: 193–204. ArticleCASPubMed Google Scholar
Doorn J, van de Peppel J, van Leeuwen JPTM, Groen N, van Blitterswijk CA, de Boer J . Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials 2011; 32: 6089–6098. ArticleCASPubMed Google Scholar
Caplan AI, Bruder SP . Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001; 7: 259–264. ArticleCASPubMed Google Scholar
Chen L, Tredget EE, Wu PYG, Wu Y . Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3: e1886. ArticleCASPubMedPubMed Central Google Scholar
Murphy MB, Blashki D, Buchanan RM, Yazdi IK, Ferrari M, Simmons PJ et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials 2012; 33: 5308–5316. ArticleCASPubMed Google Scholar
Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Transplantation 2005; 105: 1815–1822. CAS Google Scholar
Iyer S, Rojas M . Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 2008; 8: 569–582. ArticleCASPubMed Google Scholar
Uccelli A, Moretta L, Pistoia V . Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–736. ArticleCASPubMed Google Scholar
Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 2011; 8: 223–272. ArticlePubMedPubMed Central Google Scholar
Yagi H, Soto-Gutierrez A, Kitagawa Y . Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant 2010; 19: 823–830. ArticlePubMed Google Scholar
Guan X-J, Song L, Han F-F, Cui Z-L, Chen X, Guo X-J et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 2013; 114: 323–335. ArticleCASPubMed Google Scholar
Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L . MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009; 113: 6576–6583. ArticleCASPubMed Google Scholar
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26: 212–222. ArticleCASPubMed Google Scholar
Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141–150. ArticleCASPubMed Google Scholar
Yi T, Song SU . Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012; 35: 213–221. ArticleCASPubMed Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686. ArticleCASPubMed Google Scholar
Mantovani A, Sica A, Allavena P, Garlanda C, Locati M . Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70: 325–330. ArticleCASPubMed Google Scholar
Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P . The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2012; 30: 1664–1674. ArticleCASPubMed Google Scholar
Tollervey JR, Lunyak VV . Adult stem cells: simply a tool for regenerative medicine or an additional piece in the puzzle of human aging? Cell Cycle 2011; 10: 4173–4176. ArticleCASPubMed Google Scholar
Tidball JG, Villalta SA . Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1173–R1187. ArticleCASPubMedPubMed Central Google Scholar
Choi EW, Shin IS, Lee HW, Park SY, Park JH, Nam MH et al. Transplantation of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental autoimmune thyroiditis. J Gene Med 2011; 13: 3–16. ArticleCASPubMed Google Scholar
Kong Q, Sun B, Bai S, Zhai D, Wang G, Liu Y et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-β. J Neuroimmunol 2009; 207: 83–91. ArticleCASPubMed Google Scholar
Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV . Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012; 33: 8793–8801. ArticleCASPubMedPubMed Central Google Scholar
Wang Y, Wang YP, Zheng G, Lee VWS, Ouyang L, Chang DHH et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007; 72: 290–299. ArticleCASPubMed Google Scholar
Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18: 349–355. ArticleCASPubMed Google Scholar
Chaudhuri B, Pramanik K . Key aspects of the mesenchymal stem cells (MSCs) in tissue engineering for in vitro skeletal muscle regeneration. Biotechnol Mol Biol Rev 2012; 7: 5–15. CAS Google Scholar
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317. ArticleCASPubMed Google Scholar
Siegel G, Schäfer R, Dazzi F . The immunosuppressive properties of mesenchymal stem cells. Transplantation 2009; 87: S45–S49. ArticlePubMed Google Scholar
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O . HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896. ArticleCASPubMed Google Scholar
Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E et al. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 2008; 26: 1275–1287. ArticleCASPubMedPubMed Central Google Scholar
Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J . Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005; 106: 4057–4065. ArticleCASPubMed Google Scholar
Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308: 2369–2379. ArticleCASPubMedPubMed Central Google Scholar
Huang X-P, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010; 122: 2419–2429. ArticleCASPubMed Google Scholar
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ . Optimization of the Cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev 2012; 9: 281–302. ArticleCAS Google Scholar
Cselenyák A, Pankotai E, Horváth EM, Kiss L, Lacza Z . Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 2010; 11: 29. ArticleCASPubMedPubMed Central Google Scholar
Li N, Sarojini H, An J, Wang E . Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 2010; 112: 1527–1538. ArticleCASPubMed Google Scholar
Kim S-Y, Lee J-H, Kim HJ, Park MK, Huh JW, Ro JY et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 2012; 302: L891–L908. ArticleCASPubMed Google Scholar
Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673–5683. ArticleCASPubMed Google Scholar
Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661–669. ArticleCASPubMed Google Scholar
Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 2007; 104: 1643–1648. ArticleCASPubMedPubMed Central Google Scholar
Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J et al. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA 2008; 105: 18366–18371. ArticlePubMedPubMed Central Google Scholar
Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 2009; 46: 370–377. ArticleCASPubMed Google Scholar
Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R et al. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 2009; 27: 670–681. ArticleCASPubMedPubMed Central Google Scholar
Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724. ArticleCASPubMed Google Scholar
Park K, Kim Y, Choi B, Kim S, Tan A, Lee M et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 2010; 89: 509–517. CASPubMed Google Scholar
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292–1298. ArticlePubMed Google Scholar
Frohm M . The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272: 15258–15263. ArticleCASPubMed Google Scholar
Wu H, Zhang G, Minton JE, Ross CR, Blecha F . Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and salmonella enterica serovar typhimurium infection. Infect Immun 2000; 68: 5552–5558. ArticleCASPubMedPubMed Central Google Scholar
Rogan MP, Geraghty P, Greene CM, O’Neill SJ, Taggart CC, McElvaney NG . Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res 2006; 7: 29. ArticleCASPubMedPubMed Central Google Scholar
Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M . The human cationic antimicrobial protein (hcap18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999; 67: 2561–2566. CASPubMedPubMed Central Google Scholar
Nijnik A, Hancock REW . The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 2009; 16: 41–47. ArticleCASPubMed Google Scholar
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106: 3806–3811. ArticlePubMedPubMed Central Google Scholar
Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15: 42–49. ArticleCASPubMed Google Scholar
Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M . Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929–939. ArticleCASPubMed Google Scholar
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238. ArticleCASPubMedPubMed Central Google Scholar
Bonfield TL, Lennon D, Ghosh SK, DiMarino AM, Weinberg A, Caplan AI . Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery 2013; 03: 139–153. Article Google Scholar
Haniffa MA, Wang X-N, Holtick U, Rae M, Isaacs JD, Dickinson AM et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 2007; 179: 1595–1604. ArticleCASPubMed Google Scholar
Meisel R, Brockers S, Heseler K, Degistirici O, Bülle H, Woite C et al. Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 2011; 25: 648–654. ArticleCASPubMed Google Scholar
Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46: 3349–3360. ArticlePubMed Google Scholar
Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50: 817–827. ArticlePubMed Google Scholar
Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402–1416. ArticleCASPubMed Google Scholar
Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y et al. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun 2005; 332: 297–303. ArticleCASPubMed Google Scholar
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P . Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol 2006; 325: 35–46. PubMed Google Scholar
Varma MJO, Breuls RGM, Schouten TE, Jurgens WJFM, Bontkes HJ, Schuurhuis GJ et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 2007; 16: 91–104. ArticlePubMed Google Scholar
Yoshimura K, Shigeura T . Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208: 64–76. ArticleCASPubMed Google Scholar
Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24: 376–385. ArticlePubMed Google Scholar
Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 2013; 9: 32–43. ArticleCAS Google Scholar
Simmons P, Torok-Storb B . Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55–62. CASPubMed Google Scholar
Gronthos S, Graves S, Ohta S, Simmons P . The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 1994; 84: 4164–4173. CASPubMed Google Scholar
Gronthos S, Simmons P, Graves S, Robey G, Integrin-mediated P . interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001; 28: 174–181. ArticleCASPubMed Google Scholar
Lin C-S, Xin Z-C, Deng C-H, Ning H, Lin G, Lue TF . Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 2010; 25: 807–815. PubMed Google Scholar
Tavassoli M, Crosby W . Transplantation of marrow to extramedullary sites. Science 1968; 161: 54–56. ArticleCASPubMed Google Scholar
Goel A, Sangwan SS, Siwach RC, Ali AM . Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005; 36: 203–206. ArticlePubMed Google Scholar
Hernigou P, Poignard A, Beaujean F, Rouard H . Percutaneous autologous bone-marrow grafting for nonunions. J Bone Joint Surg 2005, 1430–1437.
J Centeno C, R Schultz J, Cheever M . A case series of percutaneous treatment of non-union fractures with autologous, culture expanded, bone marrow derived, mesenchymal stem cells and platelet lysate. J Bioeng Biomed Sci 2011; 01: 2–7. Article Google Scholar
Gangji V, Hauzeur J-P, Matos C, De Maertelaer V, Toungouz M, Lambermont M . Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. J Bone Joint Surg Am 2004; 86: 1153–1160. ArticlePubMed Google Scholar
Hernigou P, Daltro G, Filippini P, Mukasa MM, Manicom O . Percutaneous implantation of autologous bone marrow osteoprogenitor cells as treatment of bone avascular necrosis related to sickle cell disease. Open Orthop J 2008; 2: 62–65. ArticlePubMedPubMed Central Google Scholar
Boden SD . Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002; 27: S26–S31. ArticlePubMed Google Scholar
Steinmann JC, Herkowitz HN . Pseudoarthrosis of the spine. Clin Orthop Relat Res 1992; 284: 80–90. Google Scholar
Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J . The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29: 3973–3982. ArticleCASPubMed Google Scholar
Schnabel LV, Lynch ME, van der Meulen MCH, Yeager AE, Kornatowski Ma, Nixon AJ . Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 2009; 27: 1392–1398. ArticleCASPubMed Google Scholar
Zhang Y, Wang F, Chen J, Ning Z, Yang L . Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 2012; 36: 1079–1086. ArticlePubMed Google Scholar
Haleem AM, Aziz A, Singergy E, Sabry D, Atta HM, Laila A et al. The Clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glu in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 2010; 1: 253–261. ArticlePubMedPubMed Central Google Scholar
Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D . Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Techni 2012; 1: e175–e180. Article Google Scholar
Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A et al. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 2013; 97: 145–151. ArticlePubMed Google Scholar
Felson DT . Osteoarthritis of the Knee. New England J Med 2006; 354: 841–848. ArticleCAS Google Scholar
Pak J . Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Reports 2011; 5: 296. ArticlePubMed Central Google Scholar
Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B . Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 2011; 14: 211–215. ArticlePubMed Google Scholar
Gruber HE . Hanley ENJ. Recent advances in disc cell biology. Spine 2003; 28: 186–193. ArticlePubMed Google Scholar
Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel H-J . Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine 2009; 34: 2297–2304. ArticlePubMed Google Scholar
McKay RG, Pfeffer Ma, Pasternak RC, Markis JE, Come PC, Nakao S et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 1986; 74: 693–702. ArticleCASPubMed Google Scholar
Frantz S, Bauersachs J, Ertl G . Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 2009; 81: 474–481. ArticleCASPubMed Google Scholar
Ramshorst J, van, Bax J . Intramyocardial bone marrow cell injection for chronic myocardial ischemia. JAMA 2009; 301: 1997–2004. ArticlePubMed Google Scholar
Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DXM, Ellis SG et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 2012; 308: 2380–2389. ArticleCASPubMedPubMed Central Google Scholar
Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011; 108: 792–796. ArticleCASPubMedPubMed Central Google Scholar
Haack-Sørensen M, Friis T, Mathiasen AB, Jørgensen E, Hansen L, Dickmeiss E et al. Direct intramyocardial mesenchymal stromal cell injections in patients with severe refractory angina: one-year follow-up. Cell Transplant 2013; 22: 521–528. ArticlePubMed Google Scholar
Hackett TL, Knight Da, Sin DD . Potential role of stem cells in management of COPD. Int J Chron Obstruct Pulmon Dis 2010; 5: 81–88. PubMedPubMed Central Google Scholar
Andrade C, Wong A, Waddell T, Keshavjee S, Liu M . Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol 2007; 292: 510–518. ArticleCAS Google Scholar
Weiss DJ, Casaburi R, Flanneryc R, LeRoux-Williams M, Tashkin DP . A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013; 143.
Lawall H, Bramlage P, Amann B . Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost 2010; 103: 696–709. ArticleCASPubMed Google Scholar
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427–435. ArticlePubMed Google Scholar
Maione C, Botti C, Coppola CA, Silvestroni C, Lillo S, Schiavone V et al. Effect of autologous transplantation of bone marrow cells concentrated with the marrowxpress system in patients with critical limb ischemia. Trans Plant Proc 2013; 45: 402–406. ArticleCAS Google Scholar
Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13: 1299–1312. ArticleCASPubMed Google Scholar
Öksüz S, Ülkür E, Öncül O, Köse GT, Küçükodaci Z, Urhan M . The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model. Plast Reconstr Surg 2013; 131: 463–471. ArticleCASPubMed Google Scholar
Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 2005; 139: 141–144. ArticleCASPubMed Google Scholar
Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen; 18: 50–58.
Nakahara J, Maeda M, Aiso S, Suzuki N . Current concepts in multiple sclerosis: autoimmunity versus oligodendropathy. Clin Rev Allergy Immunol 2012; 42: 26–34. ArticleCASPubMed Google Scholar
Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57: 1192–1203. ArticlePubMedPubMed Central Google Scholar
Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010; 227: 185–189. ArticleCASPubMed Google Scholar
Karussis D . Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187–1194. ArticlePubMedPubMed Central Google Scholar
Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11: 150–156. ArticlePubMedPubMed Central Google Scholar
Lang A, Obeso J . Time to move beyond nigrostriatal dopamine deficiency in Parkinson’s disease. Ann Neurol 2004; 55: 761–765. ArticlePubMed Google Scholar
Alvarez-Buylla A, García-Verdugo JM, Tramontin AD . A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2: 287–293. ArticleCASPubMed Google Scholar
Freed C, Greene P . Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Eng J Med 2001; 344: 710–719. ArticleCAS Google Scholar
Venkataramana NK, Kumar SKV, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010; 155: 62–70. ArticleCASPubMed Google Scholar
Venkataramana NK, Pal R, Rao SaV, Naik AL, Jan M, Nair R et al. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: a pilot clinical study. Stem Cells Int 2012; 2012: 931902. ArticleCASPubMedPubMed Central Google Scholar
Savitz SI, Misra V, Kasam M, Juneja H, Cox CS, Alderman S et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 2011; 70: 59–69. ArticlePubMed Google Scholar
Chen C-J, Ou Y-C, Liao S-L, Chen W-Y, Chen S-Y, Wu C-W et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 2007; 204: 443–453. ArticleCASPubMed Google Scholar
Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG . Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006; 198: 54–64. ArticleCASPubMed Google Scholar
Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 2012; 29: 1614–1625. ArticlePubMedPubMed Central Google Scholar
Park H, Shim Y, Ha Y, Yoon S . Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating. Tissue Eng 2005; 11: 913–922. ArticleCASPubMed Google Scholar
Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70: 1238–1247. ArticlePubMed Google Scholar
Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25: 2066–2073. ArticlePubMed Google Scholar
Attar A, Ayten M, Ozdemir M, Ozgencil E, Bozkurt M, Kaptanoglu E et al. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells. Cytotherapy 2011; 13: 54–60. ArticlePubMed Google Scholar
Zurita M, Otero L, Aguayo C, Bonilla C, Ferreira E, Parajón A et al. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy 2010; 12: 522–537. ArticleCASPubMed Google Scholar
Rose NR, Bona C . Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993; 14: 426–430. ArticleCASPubMed Google Scholar
Bocelli-Tyndall C, Bracci L, Spagnoli G, Braccini A, Bouchenaki M, Ceredig R et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology 2007; 46: 403–408. ArticleCASPubMed Google Scholar
Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011; 20: 1297–1308. ArticleCASPubMed Google Scholar
Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 2010; 69: 241–248. ArticleCASPubMed Google Scholar
Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 2010; 59: 1662–1669. ArticlePubMed Google Scholar
Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011; 60: 788–798. ArticlePubMed Google Scholar
Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 2009; 27: 1421–1432. ArticleCASPubMedPubMed Central Google Scholar
Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 2010; 19: 317–322. ArticleCASPubMed Google Scholar
Prasad VK, Lucas KG, Kleiner GI, Talano JAM, Jacobsohn D, Broadwater G et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (ProchymalTM) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011; 17: 534–541. ArticleCASPubMed Google Scholar
Perin EC, Dib N, DeMaria A, Marroquin OC, Huang PP, Traverse JH et al. A phase II dose-escalation study of allogenic mesenchymal precursor cells in patients with ischemic and non-ischemic heart failure. Paper presented at: 2011 Scientific Sessions of the American Heart Association. 14, November 2011; Orlando, FL, 2011.
Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15: 804–811. ArticleCASPubMed Google Scholar
Goldschlager T, Rosenfeld JV, Ghosh P, Itescu S, Blecher C, McLean C et al. Cervical interbody fusion is enhanced by allogeneic mesenchymal precursor cells in an ovine model. Spine 2011; 36: 615–623. ArticlePubMed Google Scholar
Ghosh P, Moore R, Vernon-Roberts B, Goldschlager T, Pascoe D, Zannettino A et al. Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J Neurosurg Spine 2012; 16: 479–488. ArticlePubMed Google Scholar
Meldrum J, Mesoblast L Mesoblast reports positive interim results in phase 2 trial of proprietary adult stem cells for intervertebral disc repair [Internet] 2013 globenewswire.com.
Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J. 2011; 161: 1078–1087. ArticlePubMed Google Scholar
Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009; 54: 2277–2286. ArticleCASPubMedPubMed Central Google Scholar
CFR—Code of Federal Regulations Title 21 (Internet) 2004 cited 17 June 2013.
Carpenter MK, Frey-Vasconcells J, Rao MS . Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 2009; 27: 606–613. ArticleCASPubMed Google Scholar
Malarkey MAC for BE and R. Untitled Letter to Regenerative Sciences, Inc 7/25/08 (Internet) 2008.
Malarkey MAC for BE and R. Untitled Letter to IntelliCell Biosciences, Inc. 3/13/12 2012.
Malarkey MAC for BE and R. Untitled Letter to Celltex Therapeutics Corporation 9/24/12 2012.
Muschler GF, Nitto H, Boehm CA, Easley KA . Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001; 19: 117–125. ArticleCASPubMed Google Scholar
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K . Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294–1301. ArticleCASPubMed Google Scholar
Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM . Adult bone marrow is a rich source of human mesenchymal “stem” cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368–374. ArticlePubMed Google Scholar
Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 2000; 96: 3637–3643. CASPubMed Google Scholar
Castro-Malaspina H, Ebell W, Wang S . Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Res 1984; 154: 209–236. CASPubMed Google Scholar
Astori G, Vignati F, Bardelli S, Tubio M, Gola M, Albertini V et al. “_In vitro_” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 2007; 5: 55. ArticleCASPubMedPubMed Central Google Scholar
Jurgens WJFM, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res 2008; 332: 415–426. ArticlePubMedPubMed Central Google Scholar
Fraser JK, Wulur I, Alfonso Z, Zhu M, Wheeler ES . Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 2007; 9: 459–467. ArticleCASPubMed Google Scholar
Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells fro. J Cell Biochem 2011; 112: 1206–1218. ArticleCASPubMed Google Scholar
Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005; 23: 1105–1112. ArticleCASPubMed Google Scholar
Lund TC, Tolar J, Orchard PJ . Granulocyte colony-stimulating factor mobilized CFU-F can be found in the peripheral blood but have limited expansion potential. Haematologica 2008; 93: 908–912. ArticleCASPubMed Google Scholar
Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008; 58: 1731–1740. ArticleCASPubMed Google Scholar
Sessarego N, Parodi A, Podestà M, Benvenuto F, Mogni M, Raviolo V et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 2008; 93: 339–346. ArticlePubMed Google Scholar