Structural basis of BMP signalling inhibition by the cystine knot protein Noggin (original) (raw)
Massague, J. TGF-β signal transduction. Annu. Rev. Biochem.67, 753–791 (1998) ArticleCAS Google Scholar
Hogan, B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev.10, 1580–1594 (1996) ArticleCAS Google Scholar
Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell70, 829–840 (1992) ArticleCAS Google Scholar
Hsu, D. R., Economides, A. N., Wang, X., Eimon, P. M. & Harland, R. M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell1, 673–683 (1998) ArticleCAS Google Scholar
Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell86, 589–598 (1996) ArticleCAS Google Scholar
Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell86, 599–606 (1996) ArticleCAS Google Scholar
Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science280, 1455–1457 (1998) ArticleADSCAS Google Scholar
Gong, Y. et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nature Genet.21, 302–304 (1999) ArticleCAS Google Scholar
Dixon, M. E., Armstrong, P., Stevens, D. B. & Bamshad, M. Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism. Genet. Med.3, 349–353 (2001) ArticleCAS Google Scholar
Takahashi, T. et al. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome. Clin. Genet.60, 447–451 (2001) ArticleCAS Google Scholar
Lim, D. A. et al. Noggin antagonizes BMP signalling to create a niche for adult neurogenesis. Neuron28, 713–726 (2000) ArticleCAS Google Scholar
Ogawa, K. et al. Induction of a noggin-like gene by ectopic DV interaction during planarian regeneration. Dev. Biol.250, 59–70 (2002) ArticleCAS Google Scholar
Economides, A. N., Stahl, N. E., & Harland, R. M. Modified noggin polypeptide and compositions. US Patent 6,075,007 (2000).
Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem.277, 2089–2096 (2002) ArticleCAS Google Scholar
Groppe, J. et al. Biochemical and biophysical characterization of refolded Drosophila DPP, a homolog of bone morphogenetic proteins 2 and 4. J. Biol. Chem.273, 29052–29065 (1998) ArticleCAS Google Scholar
Dauter, Z., Dauter, M. & Rajashankar, K. R. Novel approach to phasing proteins: derivatization by short cryo- soaking with halides. Acta Crystallogr. D56, 232–237 (2000) ArticleCAS Google Scholar
Griffith, D. L., Keck, P. C., Sampath, T. K., Rueger, D. C. & Carlson, W. D. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor β superfamily. Proc. Natl Acad. Sci. USA93, 878–883 (1996) ArticleADSCAS Google Scholar
Vitt, U. A., Hsu, S. Y. & Hsueh, A. J. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol. Endocrinol.15, 681–694 (2001) ArticleCAS Google Scholar
Kirsch, T., Nickel, J. & Sebald, W. BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J.19, 3314–3324 (2000) ArticleCAS Google Scholar
Kirsch, T., Sebald, W. & Dreyer, M. K. Crystal structure of the BMP-2–BRIA ectodomain complex. Nature Struct. Biol.7, 492–496 (2000) ArticleCAS Google Scholar
Stanley, E. et al. DAN is a secreted glycoprotein related to Xenopus cerberus. Mech. Dev.77, 173–184 (1998) ArticleCAS Google Scholar
Sun, P. D. & Davies, D. R. The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct.24, 269–291 (1995) ArticleCAS Google Scholar
Hatta, T. et al. Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers55, 399–406 (2000) ArticleCAS Google Scholar
Capdevila, J. & Johnson, R. L. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev. Biol.197, 205–217 (1998) ArticleCAS Google Scholar
Merino, R. et al. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFβs, and noggin through BMP signaling. Dev. Biol.200, 35–45 (1998) ArticleCAS Google Scholar
Capdevila, J., Tsukui, T., Rodriquez Esteban, C., Zappavigna, V. & Izpisua Belmonte, J. C. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol. Cell4, 839–849 (1999) ArticleCAS Google Scholar
Merino, R. et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development126, 5515–5522 (1999) CASPubMed Google Scholar
Zuniga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature401, 598–602 (1999) ArticleADSCAS Google Scholar
Iemura, S. et al. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl Acad. Sci. USA95, 9337–9342 (1998) ArticleADSCAS Google Scholar
Francis-West, P. H., Parish, J., Lee, K. & Archer, C. W. BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res.296, 111–119 (1999) ArticleCAS Google Scholar
Duprez, D. et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech. Dev.57, 145–157 (1996) ArticleCAS Google Scholar
Macias, D. et al. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development124, 1109–1117 (1997) CASPubMed Google Scholar
Enomoto-Iwamoto, M. et al. Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol.140, 409–418 (1998) ArticleCAS Google Scholar
Yokouchi, Y. et al. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development122, 3725–3734 (1996) CASPubMed Google Scholar
Zou, H. & Niswander, L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science272, 738–741 (1996) ArticleADSCAS Google Scholar
Gañan, Y., Macias, D., Duterque-Coquillaud, M., Ros, M. A. & Hurle, J. M. Role of TGFβs and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development122, 2349–2357 (1996) PubMed Google Scholar
Healy, C., Uwanogho, D. & Sharpe, P. T. Regulation and role of Sox9 in cartilage formation. Dev. Dyn.215, 69–78 (1999) ArticleCAS Google Scholar
Marcelino, J. et al. Human disease-causing NOG missense mutations: effects on noggin secretion, dimer formation, and bone morphogenetic protein binding. Proc. Natl Acad. Sci. USA98, 11353–11358 (2001) ArticleADSCAS Google Scholar
Mangino, M., Flex, E., Digilio, M. C., Giannotti, A. & Dallapiccola, B. Identification of a novel NOG gene mutation (P35S) in an Italian family with symphalangism. Hum. Mutat.19, 308 (2002) ArticleCAS Google Scholar
Sampath, T. K. et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J. Biol. Chem.267, 20352–20362 (1992) CASPubMed Google Scholar
Valenzuela, D. M. et al. Identification of mammalian noggin and its expression in the adult nervous system. J. Neurosci.15, 6077–6084 (1995) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999) ArticleCAS Google Scholar
Collaborative Computational Project Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994) ArticleCAS Google Scholar
Russell, R. B. & Barton, G. J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins Struct. Funct. Genet.14, 309–323 (1992) ArticleCAS Google Scholar