Cell fusion is the principal source of bone-marrow-derived hepatocytes (original) (raw)

References

  1. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000)
    Article CAS Google Scholar
  2. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988)
    Article ADS CAS Google Scholar
  3. Pereira, R. F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Science 276, 71–74 (1997)
    Article Google Scholar
  4. Jiang, Y. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904 (2002)
    Article CAS Google Scholar
  5. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Hum. Immunol. 59, 137–148 (1998)
    Article Google Scholar
  6. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1959–1962 (2000)
    Article Google Scholar
  7. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001)
    Article ADS CAS Google Scholar
  8. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001)
    Article CAS Google Scholar
  9. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999)
    Article ADS CAS Google Scholar
  10. Theise, N. D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240 (2000)
    Article CAS Google Scholar
  11. Alison, M. R. et al. Hepatocytes from non-hepatic adult stem cells. Nature 406, 257 (2000)
    Article ADS CAS Google Scholar
  12. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002)
    Article ADS CAS Google Scholar
  13. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002)
    Article ADS CAS Google Scholar
  14. Whitney, M. A. et al. Germ cell defects and hematopoietic hypersensitivity to γ-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88, 49–58 (1996)
    CAS PubMed Google Scholar
  15. Overturf, K. et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nature Genet. 12, 266–273 (1996)
    Article CAS Google Scholar
  16. Wang, X. et al. Kinetics of liver repopulation after bone marrow transplantation. Am. J. Pathol. 161, 565–574 (2002)
    Article Google Scholar
  17. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992)
    Article CAS Google Scholar
  18. Overturf, K. et al. Ex vivo hepatic gene therapy of a mouse model of Hereditary Tyrosinemia Type I. Hum. Gene Ther. 9, 295–304 (1998)
    Article CAS Google Scholar
  19. Overturf, K., Al-Dhalimy, M., Ou, C. N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997)
    CAS PubMed PubMed Central Google Scholar
  20. Mitchell, G. A., Grompe, M., Lambert, M. & Tanguay, R. M. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. & Valle, D.) 1777–1805 (MacGraw-Hill, New York, 2001)
    Google Scholar
  21. Martin, G. M. & Sprague, C. A. Vinblastine induces multipolar mitoses in tetraploid human cells. Exp. Cell Res. 63, 466–467 (1970)
    Article CAS Google Scholar
  22. Faktor, V. M. & Uryvaeva, I. V. Progressive polyploidy in mouse liver following repeated hepatectomy. Tsitologiia 17, 909–916 (1975)
    CAS PubMed Google Scholar
  23. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991)
    Article CAS Google Scholar
  24. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993)
    Article CAS Google Scholar
  25. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genet. 10, 453–460 (1995)
    Article CAS Google Scholar
  26. Berry, M. N. & Friend, D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biol. 43, 506–520 (1969)
    Article CAS Google Scholar
  27. Overturf, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am. J. Pathol. 155, 2135–2143 (1999)
    Article CAS Google Scholar
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (eds Ford, N., Nolan, C. & Ferguson, M.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989)
    Google Scholar
  29. Labelle, Y., Puymirat, J. & Tanguay, R. M. Localization of cells in the rat brain expressing fumarylacetoacetate hydrolase, the deficient enzyme in hereditary tyrosinemia type 1. Biochim. Biophys. Acta 1180, 250–256 (1993)
    Article CAS Google Scholar
  30. MacGregor, G. R., Mogg, A. E., Burke, J. F. & Caskey, C. T. Histochemical staining of clonal mammalian cell lines expressing E. coli β-galactosidase indicate heterogeneous expression of the bacterial gene. Somat. Cell Mol. Genet. 13, 253–265 (1987)
    Article CAS Google Scholar

Download references