The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA (original) (raw)

References

  1. Pathak, V. K. & Temin, H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc. Natl Acad. Sci. USA 87, 6019–6023 (1990)
    Article ADS CAS PubMed PubMed Central Google Scholar
  2. Li, Y. et al. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J. Virol. 65, 3973–3985 (1991)
    CAS PubMed PubMed Central Google Scholar
  3. Vartanian, J. P., Meyerhans, A., Asjo, B. & Wain-Hobson, S. Selection, recombination, and G → A hypermutation of human immunodeficiency virus type 1 genomes. J. Virol. 65, 1779–1788 (1991)
    CAS PubMed PubMed Central Google Scholar
  4. Vartanian, J. P., Meyerhans, A., Sala, M. & Wain-Hobson, S. G → A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. Proc. Natl Acad. Sci. USA 91, 3092–3096 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  5. Fitzgibbon, J. E., Mazar, S. & Dubin, D. T. A new type of G → A hypermutation affecting human immunodeficiency virus. AIDS Res. Hum. Retroviruses 9, 833–838 (1993)
    Article CAS PubMed Google Scholar
  6. Vartanian, J. P., Henry, M. & Wain-Hobson, S. Sustained G → A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J. Gen. Virol. 83, 801–805 (2002)
    Article CAS PubMed Google Scholar
  7. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002)
    Article ADS CAS PubMed Google Scholar
  8. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)
    Article CAS PubMed Google Scholar
  9. Strebel, K. et al. The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328, 728–730 (1987)
    Article ADS CAS PubMed Google Scholar
  10. Fisher, A. G. et al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 237, 888–893 (1987)
    Article ADS CAS PubMed Google Scholar
  11. Gabuzda, D. H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4 + T lymphocytes. J. Virol. 66, 6489–6495 (1992)
    CAS PubMed PubMed Central Google Scholar
  12. Sova, P. & Volsky, D. J. Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J. Virol. 67, 6322–6326 (1993)
    CAS PubMed PubMed Central Google Scholar
  13. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993)
    CAS PubMed PubMed Central Google Scholar
  14. Simon, J. H. & Malim, M. H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996)
    CAS PubMed PubMed Central Google Scholar
  15. Zhang, H., Pomerantz, R. J., Dornadula, G. & Sun, Y. Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J. Virol. 74, 8252–8261 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  16. Dettenhofer, M., Cen, S., Carlson, B. A., Kleiman, L. & Yu, X. F. Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J. Virol. 74, 8938–8945 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  17. Khan, M. A. et al. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J. Virol. 75, 7252–7265 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  18. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002)
    Article CAS PubMed Google Scholar
  19. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002)
    Article ADS CAS PubMed Google Scholar
  20. Dornadula, G., Yang, S., Pomerantz, R. J. & Zhang, H. Partial rescue of the vif-negative phenotype of mutant human immunodeficiency virus type 1 strains from nonpermissive cells by intravirion reverse transcription. J. Virol. 74, 2594–2602 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  21. Janini, M., Rogers, M., Birx, D. R. & McCutchan, F. E. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+ ) T cells. J. Virol. 75, 7973–7986 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  22. Kao, S. et al. Human immunodeficiency virus type 1 Vif is efficiently packaged into virions during productive but not chronic infection. J. Virol. 77, 1131–1140 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  23. Chester, A., Scott, J., Anant, S. & Navaratnam, N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta 1494, 1–13 (2000)
    Article CAS PubMed Google Scholar
  24. Mehta, A., Banerjee, S. & Driscoll, D. M. Apobec-1 interacts with a 65-kDa complementing protein to edit apolipoprotein-B mRNA in vitro. J. Biol. Chem. 271, 28294–28299 (1996)
    Article CAS PubMed Google Scholar
  25. Martinez, M. A., Vartanian, J. P. & Wain-Hobson, S. Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc. Natl Acad. Sci. USA 91, 11787–11791 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  26. Vartanian, J. P. et al. HIV genetic variation is directed and restricted by DNA precursor availability. J. Mol. Biol. 270, 139–151 (1997)
    Article CAS PubMed Google Scholar
  27. Cattaneo, R. et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55, 255–265 (1988)
    Article MathSciNet CAS PubMed PubMed Central Google Scholar
  28. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  29. Zhang, H., Dornadula, G. & Pomerantz, R. J. Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J. Virol. 70, 2809–2824 (1996)
    CAS PubMed PubMed Central Google Scholar
  30. MacGinnitie, A. J., Anant, S. & Davidson, N. O. Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA editing activity. J. Biol. Chem. 270, 14768–14775 (1995)
    Article CAS PubMed Google Scholar

Download references