Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan (original) (raw)

References

  1. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000)
    Article ADS CAS Google Scholar
  2. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000)
    Article ADS CAS Google Scholar
  3. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)
    Article ADS CAS Google Scholar
  4. Smith, J. S. et al. A phylogenetically conserved NAD + -dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000)
    Article ADS CAS Google Scholar
  5. Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000)
    Article ADS CAS Google Scholar
  6. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735–745 (1999)
    Article CAS Google Scholar
  7. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001)
    Article ADS CAS Google Scholar
  8. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001)
    Article CAS Google Scholar
  9. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001)
    Article CAS Google Scholar
  10. Langley, E. P. M. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396 (2002)
    Article CAS Google Scholar
  11. Kenyon, C. A conserved regulatory mechanism for ageing. Cell 105, 165–168 (2001)
    Article CAS Google Scholar
  12. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and Pnc1 govern lifespan extension by calorie restriction in S. cerevisiae. Nature 423, 181–185 (2003)
    Article ADS CAS Google Scholar
  13. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated ageing by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002)
    Article CAS Google Scholar
  14. Masoro, E. J. Caloric restriction and ageing: an update. Exp. Gerontol. 35, 299–305 (2000)
    Article CAS Google Scholar
  15. Glossmann, H., Presek, P. & Eigenbrodt, E. Quercetin inhibits tyrosine phosphorylation by the cyclic nucleotide-independent, transforming protein kinase, pp60src. Naunyn Schmiedebergs Arch. Pharmacol. 317, 100–102 (1981)
    Article CAS Google Scholar
  16. Oliver, J. M., Burg, D. L., Wilson, B. S., McLaughlin, J. L. & Geahlen, R. L. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J. Biol. Chem. 269, 29697–29703 (1994)
    CAS PubMed Google Scholar
  17. Ferguson, L. R. Role of plant polyphenols in genomic stability. Mutat. Res. 475, 89–111 (2001)
    Article CAS Google Scholar
  18. Middleton, E. Jr, Kandaswami, C. & Theoharides, T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673–751 (2000)
    CAS PubMed Google Scholar
  19. Jang, M. et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220 (1997)
    Article CAS Google Scholar
  20. Stojanovic, S., Sprinz, H. & Brede, O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch. Biochem. Biophys. 391, 79–89 (2001)
    Article CAS Google Scholar
  21. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions. J. Mol. Biol. 12, 88–118 (1965)
    Article CAS Google Scholar
  22. Sinclair, D. A. Paradigms and pitfalls of yeast longevity research. Mech. Ageing Dev. 123, 857–867 (2002)
    Article CAS Google Scholar
  23. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles-a cause of ageing in yeast. Cell 91, 1033–1042 (1997)
    Article CAS Google Scholar
  24. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999)
    Article CAS Google Scholar
  25. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999)
    Article CAS Google Scholar
  26. Jazwinski, S. M. Metabolic control and gene dysregulation in yeast ageing. Ann. NY Acad. Sci. 908, 21–30 (2000)
    Article ADS CAS Google Scholar
  27. Dong, Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res. 523–524, 145–150 (2003)
    Article Google Scholar
  28. Nicolini, G., Rigolio, R., Miloso, M., Bertelli, A. A. & Tredici, G. Anti-apoptotic effect of trans-resveratrol on paclitaxel-induced apoptosis in the human neuroblastoma SH-SY5Y cell line. Neurosci. Lett. 302, 41–44 (2001)
    Article CAS Google Scholar
  29. Pandey, R. et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036–5055 (2002)
    Article CAS Google Scholar
  30. Soleas, G. J., Diamandis, E. P. & Goldberg, D. M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. 30, 91–113 (1997)
    Article CAS Google Scholar

Download references