Protein degradation and protection against misfolded or damaged proteins (original) (raw)

References

  1. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).
    Article CAS Google Scholar
  2. Goldberg, A. L. & Dice, J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43, 835–869 (1974).
    Article CAS Google Scholar
  3. Sherman, M. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001).
    Article CAS Google Scholar
  4. Goldberg, A. L. Degradation of abnormal proteins in E. coli. Proc. Natl Acad. Sci. USA 69, 422–426 (1972).
    Article ADS CAS Google Scholar
  5. Zwickl, P., Goldberg, A. L. & Baumeister, W. in Proteasomes: The World of Regulatory Proteolysis (eds Wolf, D. H. & Hilt, W.) 8–20 (Landes Bioscience, Georgetown, Texas, 2000).
    Google Scholar
  6. Etlinger, J. & Goldberg, A. L. A soluble, ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA. 74, 54–58 (1977).
    Article ADS CAS Google Scholar
  7. Klemes, Y., Etlinger, J. D. & Goldberg, A. L. Properties of proteins degraded rapidly in reticulocytes: intracellular aggregation of the globin molecules prior to hydrolysis. J. Biol. Chem. 256, 8436–8444 (1981).
    CAS PubMed Google Scholar
  8. Bunn, H. F. et al. Hemoglobin: Molecular, Genetic, and Clinical Aspects (Saunders, Philadelphia, 1986).
    Google Scholar
  9. Goldberg, A. L. & Goff, S. A. in Maximizing Gene Expression Ch. 9 (eds Reznikoff, W. & Gold, L.) 287–314 (Butterworths, Stoneham, Massachusetts, 1986).
    Book Google Scholar
  10. Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J. 22, 2309–2317 (2003).
    Article CAS Google Scholar
  11. Goff, S. A., Voellmy, R. & Goldberg, A. L. in Ubiquitin Ch. 8 (ed. Rechsteiner, M.) 207–238 (Plenum, New York, 1988).
    Book Google Scholar
  12. Roche, E. & Sauer, R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18, 4579–4589 (1999).
    Article CAS Google Scholar
  13. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).
    Article CAS Google Scholar
  14. Hartl, F. U. & Mayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).
    Article ADS CAS Google Scholar
  15. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 44, 770–774 (2000).
    Article ADS Google Scholar
  16. Gronostajski, R., Pardee, A. B. & Goldberg, A. L. The ATP-dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J. Biol. Chem. 260, 3344–3349 (1985).
    CAS PubMed Google Scholar
  17. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).
    Article CAS Google Scholar
  18. Grune, T., Reinheckel, T., Davies, K. J. Degradation of oxidized proteins in mammalian cells. FASEB J. 11, 536–534 (1997).
    Article Google Scholar
  19. Tarcsa, E., Szymanska, G., Lecker, S., O'Connor, C. M. & Goldberg, A. L. Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitylation. J. Biol. Chem. 275, 20295–20301 (2000).
    Article CAS Google Scholar
  20. Prouty, W. F. & Goldberg, A. L. Fate of abnormal proteins in E. coli: accumulation in intracellular granules before catabolism. Nature New Biol. 240, 147–150 (1972).
    Article CAS Google Scholar
  21. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).
    Article CAS Google Scholar
  22. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 1998. 143, 1883–1898.
  23. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).
    Article CAS Google Scholar
  24. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA 77, 1365–1368 (1980).
    Article ADS CAS Google Scholar
  25. Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313 (1987).
    CAS Google Scholar
  26. Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262, 2451–2457 (1987).
    CAS Google Scholar
  27. Voges, D., Zwickl, P., Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (2000).
    Article Google Scholar
  28. Ananthan, J., Goldberg, A. L. & Voellmy, R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat-shock genes. Science 232, 522–524 (1986).
    Article ADS CAS Google Scholar
  29. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).
    Article CAS Google Scholar
  30. Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138. (2001).
    Article CAS Google Scholar
  31. Wickner, S., Maurizi, M. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).
    Article CAS Google Scholar
  32. Huang, H.C., Sherman, M. Y., Kandror, O. & Goldberg, A. L. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in E. coli. J. Biol. Chem. 276, 3920–3928 (2001).
    Article CAS Google Scholar
  33. Goldberg, A. L. The mechanisms and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9–23 (1992).
    Article CAS Google Scholar
  34. Chung, C. H. Proteases in Escherichia coli. Science 262, 372–374 (1993).
    Article ADS CAS Google Scholar
  35. Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201 (1992).
    Article CAS Google Scholar
  36. Langer, T., Kaser, M., Klanner, C., Leonhard, K. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29, 431–436 (2001).
    Article CAS Google Scholar
  37. Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A., Schatz, G. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22, 118–123 (1997).
    Article CAS Google Scholar
  38. Kandror, O., Sherman, M. Y. & Goldberg, A. L. Rapid degradation of an abnormal protein in E. coli proceeds through repeated cycles of association with GroEL. J. Biol. Chem. 274, 37743–37749 (1999).
    Article CAS Google Scholar
  39. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000).
    Article CAS Google Scholar
  40. Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78 (2003).
    Article CAS Google Scholar
  41. Lee, D. H. & Goldberg, A. L. Proteasome inhibitors cause rapid induction of heat-shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998).
    Article CAS Google Scholar
  42. Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chemy Biol. 8, 739–758 (2001).
    Article CAS Google Scholar
  43. Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem. 278, 21517–21525 (2003).
    Article CAS Google Scholar
  44. Meriin, A. B. et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol. Cell. Biol. 19, 2547–2555 (1999).
    Article CAS Google Scholar
  45. Hideshima, T. et al. The proteasome inhibitor pS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071–3076 (2001).
    CAS Google Scholar

Download references