High-resolution record of Northern Hemisphere climate extending into the last interglacial period (original) (raw)

References

  1. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992)
    Article ADS Google Scholar
  2. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993)
    Article ADS Google Scholar
  3. Greenland Ice-Core Project (GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203–208 (1993)
    Article ADS Google Scholar
  4. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993)
    Article ADS CAS Google Scholar
  5. Taylor, K. C. et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366, 549–552 (1993)
    Article ADS CAS Google Scholar
  6. Bender, M. et al. Climate correlations between Greenland and Antarctica during the last 100,000 years. Nature 372, 663–666 (1994)
    Article ADS CAS Google Scholar
  7. Fuchs, A. & Leuenberger, M. δ18O of atmospheric oxygen measured on the GRIP Ice Core document stratigraphic disturbances in the lowest 10% of the core. Geophys. Res. Lett. 23, 1049–1052 (1996)
    Article ADS CAS Google Scholar
  8. Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. 102, 26397–26410 (1997)
    Article ADS CAS Google Scholar
  9. Chappellaz, J., Brook, E., Blunier, T. & Malaizé, B. CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and Greenland Ice Sheet Project 2 ice cores. J. Geophys. Res. 102, 26547–26557 (1997)
    Article ADS CAS Google Scholar
  10. Dahl-Jensen, D. et al. The NorthGRIP deep drilling program. Ann. Glaciol. 35, 1–4 (2002)
    Article ADS Google Scholar
  11. Dahl-Jensen, D. et al. A search in north Greenland for a new ice-core drill site. J. Glaciol. 43, 300–306 (1997)
    Article ADS Google Scholar
  12. Dahl-Jensen, D., Gundestrup, N., Gorgineni, P. & Miller, H. Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol. 37, 207–212 (2003)
    Article ADS Google Scholar
  13. Alley, R. B. et al. Comparison of deep ice cores. Nature 373, 393–394 (1995)
    Article ADS CAS Google Scholar
  14. Grinsted, A. & Dahl-Jensen, D. A Monte Carlo-tuned model of the flow in the NorthGRIP area. Ann. Glaciol. 35, 527–530 (2002)
    Article ADS Google Scholar
  15. Johnsen, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001)
    Article Google Scholar
  16. Clausen, H. B. et al. A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye3 Greenland ice cores. J. Geophys. Res. 102, 26707–26723 (1997)
    Article ADS CAS Google Scholar
  17. Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998)
    Article ADS CAS Google Scholar
  18. Landais, A. et al. A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core. J. Geophys. Res. 108, doi:10.1029/2002JD0003147 (2003)
  19. Flückiger, J. et al. N2O and CH4 variations during the last glacial epoch: Insight into global processes. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002122 (2004)
  20. Suwa, M., von Fischer, J. & Bender, M. Age reconstruction for the bottom part of the GISP2 ice core based on trapped methane and oxygen isotopes records. Geophys. Res. Abstr. 5, 07811 (2003)
    Google Scholar
  21. Caillon, N. et al. Estimation of temperature change and of gas age-ice age difference, 108 kyr BP, at Vostok, Antarctica. J. Geophys. Res. 106, 31893–31901 (2001)
    Article ADS CAS Google Scholar
  22. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)
    Article ADS CAS Google Scholar
  23. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, doi:10.1029/2003PA000920 (2003)
  24. Caillon, N., Jouzel, J., Severinghaus, J. P., Chappellaz, J. & Blunier, T. A novel method to study the phase relationship between Antarctic and Greenland climate. Geophys. Res. Lett. 30, doi:10.1029/2003GL017838 (2003)
  25. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Young Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998)
    Article ADS CAS Google Scholar
  26. Chappellaz, J. et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993)
    Article ADS CAS Google Scholar
  27. Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996)
    Article ADS CAS Google Scholar
  28. Schwander, J. et al. Age scale of the air in the Summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483–19493 (1997)
    Article ADS Google Scholar
  29. Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000)
    Article ADS Google Scholar
  30. Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000)
    Article ADS CAS Google Scholar
  31. Johnsen, S., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624–629 (1995)
    Article ADS Google Scholar
  32. Cuffey, K. M. et al. Large arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995)
    Article ADS CAS Google Scholar
  33. Bennike, O. & Boecher, J. Land biotas of the last interglacial/glacial cycle, Jameson Land, East Greenland. Boreas 23, 479–488 (1994)
    Article Google Scholar
  34. Marshall, S. J. & Cuffey, K. M. Peregrinations of the Greenland Ice Sheet divide in the last glacial cycle: Implications for central Greenland ice cores. Earth Planet. Sci. Lett. 179, 73–90 (2000)
    Article ADS CAS Google Scholar
  35. Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)
    Article ADS Google Scholar
  36. Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. Nature 428, 616 (2004)
    Article ADS CAS Google Scholar
  37. McManus, J. F., Oppo, D. W., Keigwin, L. D., Cullen, J. L. & Bond, G. C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quat. Res. 58, 17–21 (2002)
    Article Google Scholar
  38. Khodri, M. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–573 (2001)
    Article ADS CAS Google Scholar
  39. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Res. 21, 295–305 (2002)
    Article ADS Google Scholar
  40. Reeh, N., Oerter, H. & Thomsen, H. H. Comparison between Greenland ice-margin and ice-core oxygen-18 records. Ann. Glaciol. 35, 136–144 (2002)
    Article ADS CAS Google Scholar
  41. Watanabe, O. et al. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509–512 (2003)
    Article ADS CAS Google Scholar
  42. Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Seasonal precipitation timing and ice core records. Science 269, 247–248 (1995)
    Article ADS CAS Google Scholar
  43. Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science 263, 508–511 (1994)
    Article ADS CAS Google Scholar
  44. Dawes, P. R. in Geology of Greenland (eds Escher, A. & Watt, W. S.) 248–303 (The Geological Survey of Greenland, Denmark, 1976)
    Google Scholar
  45. Petit, J. R., Alekhina, I. & Bulat, S. A. in Lessons for Exobiology (ed. Gargaud, M.) (Springer, in the press)
  46. Letréguilly, A., Huybrechts, P. & Reeh, N. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37, 149–157 (1991)
    Article ADS Google Scholar
  47. Letréguilly, A., Reeh, N. & Huybrechts, P. The Greenland ice sheet through the last glacial-interglacial cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 90, 385–394 (1991)
    Article Google Scholar
  48. Kukla, G., McManus, J. F., Rousseau, D.-D. & Chuine, I. How long and how stable was the Last Interglacial? Quat. Sci. Rev. 16, 605–612 (1997)
    Article ADS Google Scholar
  49. Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. & Cogineni, P. High geothermal heat flow basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342 (2001)
    Article ADS CAS Google Scholar
  50. Fahnestock, M. A. et al. Ice-stream-related patterns of ice flow in the interior of northeast Greenland. J. Geophys. Res. 106, 34035–34045 (2001)
    Article ADS Google Scholar

Download references

Acknowledgements

NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-CFB), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNF) and the USA (NSF, Office of Polar Programs).

Correspondence and requests for materials should be addressed to D.D.-J. (ddj@gfy.ku.dk) or S.J.J. (sigfus@gfy.ku.dk).

Author information

Author notes

  1. N. S. Gundestrup: Deceased

Authors and Affiliations

  1. Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, Juliane Maries Vej 30, DK-2100, Copenhagen OE, Denmark
    K. K. Andersen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. S. Hvidberg, S. J. Johnsen, S. O. Rasmussen, M.-L. Siggard-Andersen, J. P. Steffensen & A. Svensson
  2. Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, 940-2188, Japan
    N. Azuma & M. Takata
  3. Laboratoire de Glaciologie et Géophysique de l'Environnement (CNRS), BP 96, 38402, St Martin d'Héres Cedex, France
    J.-M. Barnola, J. Chappellaz & D. Raynaud
  4. Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012, Switzerland
    M. Bigler, J. Flückiger, C. Huber, M. Leuenberger, R. Rothlisberger, J. Schwander & T. Stocker
  5. Lamont-Doherty Earth Observatory of Columbia University, Rte 9W, PO Box 1000, Palisades, New York, 10964-8000, USA
    P. Biscaye
  6. Institute Pierre Simon Laplace/ Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS, CE Saclay, Omme des Merisiers, 91191, Gir-Sur-Yvette, France
    N. Caillon, J. Jouzel, A. Landais & V. Masson-Delmotte
  7. Alfred-Wegener-Institute for Polar and Marine Research (AWI), Postfach 120161, D-27515, Bremerhaven, Germany
    H. Fischer, D. Fritzsche, S. Kipfstuhl, H. Miller, U. Ruth & F. Wilhelms
  8. National Institute of Polar Research, Kaga 1-9-10, Itabashi-ku, Tokyo, 173-8515, Japan
    Y. Fujii, K. Goto-Azuma, H. Motoyama & O. Watanabe
  9. Nordic Volcanological Institute, Grensásvegur 50, 108, Reykjavik, Iceland
    K. Grønvold
  10. Department of Physical Geography and Quaternary Geology, Stockholm University, S-106 91, Stockholm, Sweden
    M. Hansson & U. Jonsell
  11. Département des Sciences de la terre et de l'Environnement, Faculté des Sciences, Université Libre de Bruxelles, CP 160/03, 50 avenue FD, Roosevelt, B1050, Brussels, Belgium
    R. Lorrain, D. Samyn & J.-L. Tison
  12. Research Institute for Humanity and Nature, Marutamachi-dori Kawaramachi nishi-iru, 335 Takashima-cho, Kamigyo-ku, Kyoto, 602-0878, Japan
    H. Narita
  13. INSTAAR, University of Colorado, Campus Box 450, Boulder, Colorado, 80309-0450, USA
    T. Popp & J. W. C. White
  14. Kitami Institute of Technology, Koencho 165, Kitami, Hokkaido, 090-8507, Japan
    H. Shoji
  15. Raunvísindastofnun Háskólans, Dunhagi, 3, Iceland
    A. E. Sveinbjörnsdóttir
  16. National Energy Authority, Grensásvegur 9, IS-108, Reykjavík, Iceland
    Th. Thorsteinsson

Consortia

North Greenland Ice Core Project members

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

In this file we list the NGRIP oxygen 18 values as 50 year mean values using the same preliminary age scale as in Figure 2c of the accompanying paper. (XLS 270 kb)

Rights and permissions

About this article

Cite this article

North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period.Nature 431, 147–151 (2004). https://doi.org/10.1038/nature02805

Download citation