Argos inhibits epidermal growth factor receptor signalling by ligand sequestration (original) (raw)

References

  1. Jorissen, R. N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53 (2003)
    Article CAS Google Scholar
  2. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001)
    Article CAS Google Scholar
  3. Shilo, B. Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 284, 140–149 (2003)
    Article CAS Google Scholar
  4. Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 12, 43–50 (2003)
    Article Google Scholar
  5. Schweitzer, R., Howes, R., Smith, R., Shilo, B. Z. & Freeman, M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702 (1995)
    Article ADS CAS Google Scholar
  6. Golembo, M., Schweitzer, R., Freeman, M. & Shilo, B. Z. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230 (1996)
    CAS PubMed Google Scholar
  7. Freeman, M., Klambt, C., Goodman, C. S. & Rubin, G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975 (1992)
    Article CAS Google Scholar
  8. Wasserman, J. D. & Freeman, M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355–364 (1998)
    Article CAS Google Scholar
  9. Jin, M. H., Sawamoto, K., Ito, M. & Okano, H. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor. Mol. Cell. Biol. 20, 2098–2107 (2000)
    Article CAS Google Scholar
  10. Vinos, J. & Freeman, M. Evidence that Argos is an antagonistic ligand of the EGF receptor. Oncogene 19, 3560–3562 (2000)
    Article CAS Google Scholar
  11. Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003)
    Article CAS Google Scholar
  12. Howes, R., Wasserman, J. D. & Freeman, M. In vivo analysis of Argos structure-function. Sequence requirements for inhibition of the Drosophila epidermal growth factor receptor. J. Biol. Chem. 273, 4275–4281 (1998)
    Article CAS Google Scholar
  13. Duan, C. Beyond carrier proteins: Specifying the cellular responses to IGF signals: roles of IGF-binding proteins. J. Endocrinol. 175, 41–54 (2002)
    Article CAS Google Scholar
  14. Groppe, J. et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636–642 (2002)
    Article ADS CAS Google Scholar
  15. Mattoon, D., Klein, P., Lemmon, M. A., Lax, I. & Schlessinger, J. The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Proc. Natl Acad. Sci. USA 101, 923–928 (2004)
    Article ADS CAS Google Scholar
  16. Schlessinger, J., Shechter, Y., Willingham, M. C. & Pastan, I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. Natl Acad. Sci. USA 75, 2659–2663 (1978)
    Article ADS CAS Google Scholar
  17. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000)
    Article ADS CAS Google Scholar
  18. Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089–2096 (2002)
    Article CAS Google Scholar
  19. Powell, A. K., Yates, E. A., Fernig, D. G. & Turnbull, J. E. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14, 17R–30R (2004)
    Article CAS Google Scholar
  20. Kramer, K. L. & Yost, H. J. Heparan sulfate core proteins in cell–cell signaling. Annu. Rev. Genet. 37, 461–484 (2003)
    Article CAS Google Scholar
  21. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998)
    Article CAS Google Scholar
  22. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328–336 (2001)
    Article CAS Google Scholar
  23. Barkai, N. & Shilo, B. Z. Modeling pattern formation: counting to two in the Drosophila egg. Curr. Biol. 12, R493–R495 (2002)
    Article CAS Google Scholar
  24. Shvartsman, S. Y., Muratov, C. B. & Lauffenburger, D. A. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129, 2577–2589 (2002)
    CAS PubMed Google Scholar
  25. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995)
    Article CAS Google Scholar
  26. Ferguson, K. M., Darling, P. J., Mohan, M. J., Macatee, T. L. & Lemmon, M. A. Extracellular domains drive homo- but not hetero-dimerization of erbB receptors. EMBO J. 19, 4632–4643 (2000)
    Article CAS Google Scholar
  27. Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B. Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518–1529 (1995)
    Article CAS Google Scholar

Download references