Muller, H. J. Types of visible variations induced by X-rays in Drosophila. J. Genetics22, 299–334 (1930). Google Scholar
Comfort, N. C. From controlling elements to transposons: Barbara McClintock and the Nobel Prize. Trends Genet.17, 475–478 (2001). CASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol.14, 286–298 (2002). ArticleCASPubMed Google Scholar
Brehm, A., Tufteland, K. R., Aasland, R. & Becker, P. B. The many colours of chromodomains. Bioessays26, 133–140 (2004). CASPubMed Google Scholar
Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet.33 (Suppl.), 245–254 (2003). CASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ArticleADSCASPubMed Google Scholar
Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science292, 2077–2080 (2001). CASPubMed Google Scholar
Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev.15, 1753–1758 (2001). CASPubMedPubMed Central Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ADSCASPubMed Google Scholar
Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21, 6842–6852 (2002). CASPubMedPubMed Central Google Scholar
Tariq, M. et al. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc. Natl Acad. Sci. USA100, 8823–8827 (2003). ADSCASPubMedPubMed Central Google Scholar
Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol.1, E67 (2003). PubMedPubMed Central Google Scholar
Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol.12, 1360–1367 (2002). CASPubMed Google Scholar
Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res.31, 2305–2312 (2003). CASPubMedPubMed Central Google Scholar
Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol. Chem.278, 4035–4040 (2003). CASPubMed Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). CASPubMed Google Scholar
Nguyen, C. T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res.62, 6456–6461 (2002). CASPubMed Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94–97 (1999). CASPubMed Google Scholar
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science297, 1871–1873 (2002). ADSCASPubMed Google Scholar
Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science260, 1926–1928 (1993). ADSCASPubMed Google Scholar
Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science293, 1070–1074 (2001). CASPubMed Google Scholar
Lippman, Z. L. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). ADSCASPubMed Google Scholar
Kato, M., Miura, A., Bender, J., Jacobsen, S. E. & Kakutani, T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr. Biol.13, 421–426 (2003). CASPubMed Google Scholar
Matzke, M. et al. Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim. Biophys. Acta1677, 129–141 (2004). CASPubMed Google Scholar
Grewal, S. I. Transcriptional silencing in fission yeast. J. Cell Physiol.184, 311–318 (2000). CASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ADSCASPubMed Google Scholar
Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science297, 1831 (2002). CASPubMed Google Scholar
Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science294, 2539–2542 (2001). ADSCASPubMed Google Scholar
Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res.11, 137–146 (2003). CASPubMed Google Scholar
Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA100, 193–198 (2003). ADSCASPubMed Google Scholar
Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet.35, 213–214 (2003). CASPubMed Google Scholar
Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002). ADSCASPubMed Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs affect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). ADSCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ADSCASPubMed Google Scholar
Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). ADSCASPubMed Google Scholar
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev.14, 1578–1583 (2000). CASPubMedPubMed Central Google Scholar
Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science290, 1159–1162 (2000). ADSCASPubMed Google Scholar
Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol.11, 1017–1027 (2001). CASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). CASPubMed Google Scholar
Djikeng, A., Shi, H., Tschudi, C. & Ullu, E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retrotransposon-derived 24-26-nucleotide RNAs. RNA7, 1522–1530 (2001). CASPubMedPubMed Central Google Scholar
Mochizuki, K., Fine, N., Fujisawa, T. & Gorovsky, M. Analysis of a _piwi_-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell110, 689 (2002). CASPubMed Google Scholar
Taverna, S. D., Coyne, R. S. & Allis, C. D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell110, 701–711 (2002). CASPubMed Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, E104 (2004). PubMedPubMed Central Google Scholar
Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). ADSCASPubMed Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ADSCASPubMed Google Scholar
Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development126, 469–481 (1999). CASPubMed Google Scholar
Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell6, 791–802 (2000). CASPubMed Google Scholar
Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science303, 521–523 (2004). ADSCASPubMed Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). CASPubMed Google Scholar
Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol.12, 1138–1144 (2002). CASPubMed Google Scholar
Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol.13, 2212–2217 (2003). CASPubMed Google Scholar
Bender, J. & Fink, G. R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell83, 725–734 (1995). CASPubMed Google Scholar
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J.19, 5194–5201 (2000). CASPubMedPubMed Central Google Scholar
Melquist, S. & Bender, J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev.17, 2036–2047 (2003). CASPubMedPubMed Central Google Scholar
Zilberman, D. et al. Role of ArabidopsisARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol.14, 1214–1220 (2004). CASPubMed Google Scholar
Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA97, 11650–11654 (2000). ADSCASPubMedPubMed Central Google Scholar
Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303, 669–672 (2004). ADSCASPubMed Google Scholar
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell9, 315–327 (2002). CASPubMed Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). CASPubMed Google Scholar
Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans. Development129, 479–492 (2002). CASPubMed Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet.30, 329–334 (2002). PubMed Google Scholar
Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet.35, 215–217 (2003). CASPubMed Google Scholar
Rudert, F., Bronner, S., Garnier, J. M. & Dolle, P. Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm. Genome6, 76–83 (1995). CASPubMed Google Scholar
Deng, W. & Lin, H. miwi a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell2, 819–830 (2002). CASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Mili a mammalian member of piwi family gene, is essential for spermatogenesis. Development131, 839–849 (2004). CASPubMed Google Scholar
Kelley, R. L. & Kuroda, M. I. Noncoding RNA genes in dosage compensation and imprinting. Cell103, 9–12 (2000). CASPubMed Google Scholar
Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet.2, 21–32 (2001). CASPubMed Google Scholar
Kiyosue, T. et al. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl Acad. Sci. USA96, 4186–4191 (1999). ADSCASPubMedPubMed Central Google Scholar
Baroux, C., Spillane, C. & Grossniklaus, U. Genomic imprinting during seed development. Adv. Genet.46, 165–214 (2002). CASPubMed Google Scholar
Sleutels, F. & Barlow, D. P. The origins of genomic imprinting in mammals. Adv. Genet.46, 119–163 (2002). CASPubMed Google Scholar
Seitz, H. et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genet.34, 261–262 (2003). ADSCASPubMed Google Scholar
Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev.16, 1906–1918 (2002). CASPubMedPubMed Central Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet.2, 59–67 (2001). CASPubMed Google Scholar
Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell107, 727–738 (2001). CASPubMed Google Scholar
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein-RNA interaction modules. Nature407, 405–409 (2000). ADSCASPubMed Google Scholar
Merok, J. R., Lansita, J. A., Tunstead, J. R. & Sherley, J. L. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res.62, 6791–6795 (2002). CASPubMed Google Scholar
McClintock, B. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol.16, 13–47 (1951). CASPubMed Google Scholar
McClintock, B., Kato Y., T. A. & Blumenschein, A. Chromosome Constitutions of Races of Maize. Their Significance for Interpreting Relationships Among Races and Strains in the Americas (A monograph.) (Colegio de Postgraduados, Escuela National de Agricultura, Chapingo, Edo. Mexico, 1981). Google Scholar
Fransz, P., Soppe, W. & Schubert, I. Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res.11, 227–240 (2003). CASPubMed Google Scholar
Osborn, T. C. et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet.19, 141–147 (2003). CASPubMed Google Scholar
Heath, E. M. & Simmons, M. J. Genetic and molecular analysis of repression in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genet. Res.57, 213–226 (1991). CASPubMed Google Scholar
Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a _piwi_-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics166, 1313–1321 (2004). CASPubMedPubMed Central Google Scholar
Sun, X., Le, H. D., Wahlstrom, J. M. & Karpen, G. H. Sequence analysis of a functional Drosophila centromere. Genome Res.13, 182–194 (2003). CASPubMedPubMed Central Google Scholar
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796–815 (2000).
Choo, K. H. Domain organization at the centromere and neocentromere. Dev. Cell1, 165–177 (2001). CASPubMed Google Scholar
Ananiev, E. V., Phillips, R. L. & Rines, H. W. Complex structure of knobs and centromeric regions in maize chromosomes. Tsitol. Genet.34, 11–15 (2000). CASPubMed Google Scholar
Nagaki, K. et al. Sequencing of a rice centromere uncovers active genes. Nature Genet.36, 138–145 (2004). CASPubMed Google Scholar
Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature422, 893–897 (2003). ADSCASPubMed Google Scholar
Jorgensen, R. A. in RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) Ch. 1, 5–21 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2003). Google Scholar
Kouzminova, E. & Selker, E. U. dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J.20, 4309–4323 (2001). CASPubMedPubMed Central Google Scholar
Xiao, W. et al. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell5, 891–901 (2003). CASPubMed Google Scholar
Colot, V., Maloisel, L. & Rossignol, J. L. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell86, 855–864 (1996). CASPubMed Google Scholar
Shiu, P. K. & Metzenberg, R. L. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics161, 1483–1495 (2002). CASPubMedPubMed Central Google Scholar
Freitag, M. et al. DNA methylation is independent of RNA interference in Neurospora. Science304, 1939 (2004). CASPubMed Google Scholar
Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell76, 567–576 (1994). CASPubMed Google Scholar