Cell-cycle checkpoints and cancer (original) (raw)
Doll, R. & Peto, R. The causes of cancer in the United States today. J. Natl Cancer Inst.66, 1192–1308 (1981). Article Google Scholar
Ford, J. M. Clinical Oncology (eds Abeloff, M. et al.) Ch. 11, 191–205 (Elsevier, Philadelphia, 2004). Google Scholar
Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science246, 629–634 (1989). ArticleADSCASPubMed Google Scholar
Froelich-Ammon, S. J. & Osheroff, N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J. Biol. Chem.270, 21429–21432 (1995). ArticleCASPubMed Google Scholar
Shiloh, Y. & Kastan, M. B. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res.83, 209–254 (2001). ArticleCASPubMed Google Scholar
Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCASPubMed Google Scholar
Kastan, M. B. & Lim, D.-S. The many substrates and functions of ATM. Mol. Cell Biol.1, 179–186 (2000). CAS Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421, 499–506 (2003). ArticleADSCASPubMed Google Scholar
Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM–NBS1–BRCA1 pathway. Genes Dev.18, 1423–1438 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mochan, T. A., Venere, M., DiTullio, R. A. Jr & Halazonetis, T. D. 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst)3, 945–952 (2004). ArticleCAS Google Scholar
Horejsi, Z. et al. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene23, 3122–3127 (2004). ArticleCASPubMed Google Scholar
Lee, J. H. & Paull, T. T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science304, 93–96 (2004). ArticleADSCASPubMed Google Scholar
Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science294, 1713–1716 (2001). ArticleADSCASPubMed Google Scholar
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science300, 1542–1548 (2003). ArticleADSCASPubMed Google Scholar
Unsal-Kacmaz, K. & Sancar, A. Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol. Cell Biol.24, 1292–1300 (2004). ArticleCASPubMedPubMed Central Google Scholar
Osborn, A. J., Elledge, S. J. & Zou, L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol.12, 509–516 (2002). ArticleCASPubMed Google Scholar
Ellison, V. & Stillman, B. Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell106, 655–660 (2001). ArticleCASPubMed Google Scholar
Lin, S. Y., Li, K., Stewart, G. S. & Elledge, S. J. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc. Natl Acad. Sci. USA101, 6484–6489 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev.16, 198–208 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brown, E. J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev.17, 615–628 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol.6, 648–655 (2004). ArticleCASPubMed Google Scholar
Hammond, E. M., Denko, N. C., Dorie, M. J., Abraham, R. T. & Giaccia, A. J. Hypoxia links ATR and p53 through replication arrest. Mol. Cell Biol.22, 1834–1843 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hekmat-Nejad, M., You, Z., Yee, M. C., Newport, J. W. & Cimprich, K. A. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol.10, 1565–1573 (2000). ArticleCASPubMed Google Scholar
Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer3, 155–168 (2003). ArticleCAS Google Scholar
Stucki, M. & Jackson, S. P. MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst)3, 953–957 (2004). ArticleCAS Google Scholar
Chini, C. C. & Chen, J. Claspin, a regulator of Chk1 in DNA replication stress pathway. DNA Repair (Amst)3, 1033–1037 (2004). ArticleCAS Google Scholar
Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell3, 421–429 (2003). ArticleCASPubMed Google Scholar
Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol.5, 255–260 (2003). ArticleCASPubMed Google Scholar
Lukas, C. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J.23, 2674–2683 (2004). ArticleCASPubMedPubMed Central Google Scholar
Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol.5, 675–679 (2003). ArticleCASPubMed Google Scholar
Goldberg, M. et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature421, 952–956 (2003). ArticleADSCASPubMed Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature doi: 10.1038/nature03114 (in the press).
Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature421, 957–961 (2003). ArticleADSCASPubMed Google Scholar
Shang, Y. L., Bodero, A. J. & Chen, P. L. NFBD1, a novel nuclear protein with signature motifs of FHA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response. J. Biol. Chem.278, 6323–6329 (2003). ArticleCASPubMed Google Scholar
Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature421, 961–966 (2003). ArticleADSCASPubMed Google Scholar
Xu, X. & Stern, D. F. NFBD1/KIAA0170 is a chromatin-associated protein involved in DNA damage signaling pathways. J. Biol. Chem.278, 8795–8803 (2003). ArticleCASPubMed Google Scholar
DiTullio, R. A. Jr et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol.4, 998–1002 (2002). ArticleCASPubMed Google Scholar
Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell Biol.23, 2556–2563 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science298, 1435–1438 (2002). ArticleADSCASPubMed Google Scholar
Manke, I. A., Lowery, D. M., Nguyen, A. & Yaffe, M. B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science302, 636–639 (2003). ArticleADSCASPubMed Google Scholar
Yu, X., Chini, C. C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science302, 639–642 (2003). ArticleADSCASPubMed Google Scholar
Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol.146, 905–916 (1999). ArticleCASPubMedPubMed Central Google Scholar
D'Amours, D. & Jackson, S. P. The mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Rev. Mol. Cell Biol.3, 317–327 (2002). ArticleCAS Google Scholar
Petrini, J. H. & Stracker, T. H. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol.13, 458–462 (2003). ArticleCASPubMed Google Scholar
Lee, J., Kumagai, A. & Dunphy, W. G. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol. Cell11, 329–340 (2003). ArticleCASPubMed Google Scholar
Sorensen, C. S., Syljuasen, R. G., Lukas, J. & Bartek, J. ATR, Claspin and the Rad9–Rad1–Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle3, 941–945 (2004). ArticleCASPubMed Google Scholar
Krämer, A. et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nature Cell Biol.9, 884–891 (2004). ArticleCAS Google Scholar
Bartek, J., Bartkova, J. & Lukas, J. The retinoblastoma protein pathway in cell cycle control and cancer. Exp. Cell Res.237, 1–6 (1997). ArticleCASPubMed Google Scholar
Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell2, 103–112 (2002). ArticleCASPubMed Google Scholar
Wahl, G. M. & Carr, A. M. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol.3, E277–E286 (2001). ArticleCASPubMed Google Scholar
Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev.15, 1067–1077 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol.5, 792–804 (2004). ArticleCAS Google Scholar
Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev.16, 560–570 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev.16, 571–582 (2002). ArticleCASPubMedPubMed Central Google Scholar
Taniguchi, T. et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell109, 459–472 (2002). ArticleCASPubMed Google Scholar
Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biol.4, 913–920 (2002). ArticleCASPubMed Google Scholar
Falck, J., Petrini, J. H., Williams, B. R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet.30, 290–294 (2002). ArticlePubMed Google Scholar
Pichierri, P. & Rosselli, F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J.23, 1178–1187 (2004). ArticleCASPubMedPubMed Central Google Scholar
Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell11, 203–213 (2003). ArticleCASPubMed Google Scholar
Xu, B., Kim, S.-T., Lim, D.-S. & Kastan, M. B. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol. Cell Biol.22, 1049–1059 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet.36, 617–656 (2002). ArticleCASPubMed Google Scholar
Katsuhiro, U., Daigo, I., Ken, S., Nobushige, N. & Noriyuki, S. CHK1, but not CHK2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J. (in the press).
Mailand, N. et al. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J.21, 5911–5920 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bulavin, D. V. et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature411, 102–107 (2001). ArticleADSCASPubMed Google Scholar
Xu, B., Kim, S. & Kastan, M. B. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol. Cell Biol.21, 3445–3450 (2001). ArticleCASPubMedPubMed Central Google Scholar
Taylor, W. R. & Stark, G. R. Regulation of the G2/M transition by p53. Oncogene20, 1803–1815 (2001). ArticleCASPubMed Google Scholar
Zhou, B. B. & Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Rev. Cancer4, 216–225 (2004). ArticleCAS Google Scholar
Treuner, K., Helton, R. & Barlow, C. Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice. Oncogene23, 4655–4661 (2004). ArticleCASPubMed Google Scholar
Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell99, 577–587 (1999). ArticleCASPubMed Google Scholar
Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell93, 477–486 (1998). ArticleCASPubMed Google Scholar
Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell93, 467–476 (1998). ArticleCASPubMed Google Scholar
O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet.33, 497–501 (2003). ArticleCASPubMed Google Scholar
Bobabilla-Morales, L. et al. Chromosome instability induced in vitro with mitomycin C in five Seckel syndrome patients. Am. J. Med. Genet.123, 148–152 (2003). Article Google Scholar
Fang, Y. et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J.23, 3164–3174 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell114, 359–370 (2003). ArticleCASPubMed Google Scholar
Canman, C. E. Checkpoint mediators: relaying signals from DNA strand breaks. Curr. Biol.13, R488–R490 (2003). ArticleCASPubMed Google Scholar
Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev.14, 1448–1459 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lam, M. H., Liu, Q., Elledge, S. J. & Rosen, J. M. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell6, 45–59 (2004). ArticleCASPubMed Google Scholar
Hirao, A. et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell Biol.22, 6521–6532 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science286, 2528–2531 (1999). ArticleCASPubMed Google Scholar
King, M. C., Marks, J. H. & Mandell, J. B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science302, 643–646 (2003). ArticleADSCASPubMed Google Scholar
Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell108, 171–182 (2002). ArticleCASPubMed Google Scholar
Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet.22, 37–43 (1999). ArticleCASPubMed Google Scholar
Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nature Genet.28, 266–271 (2001). ArticleCASPubMed Google Scholar
Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell Biol.22, 669–679 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell4, 1–10 (1999). ArticleCASPubMed Google Scholar
Theunissen, J. W. et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell12, 1511–1523 (2003). ArticleCASPubMed Google Scholar
Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet.36, 63–68 (2004). ArticleCASPubMed Google Scholar