Interaction of FANCD2 and NBS1 in the DNA damage response (original) (raw)
Khanna, K. K. et al. Cellular responses to DNA Damage and the Human Chromosome Instability Syndromes (Humana, San Diego 1998). Google Scholar
Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of fanconi anaemia. Nature Rev. Genet.2, 446–459 (2001). ArticleCASPubMed Google Scholar
Weemaes, C. M. et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr. Scand.70, 557–564 (1981). ArticleCASPubMed Google Scholar
Weemaes, C. M., Smeets, D. F., Horstink, M. Haraldsson, A. & Bakkeren J. A. Variants of Nijmegen breakage syndrome and ataxia telangiectasia. Immunodeficiency4, 109–111 (1993). CASPubMed Google Scholar
Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell99, 577–587 (1999). ArticleCASPubMed Google Scholar
Taniguchi, T. et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell109, 459–472 (2002). ArticleCASPubMed Google Scholar
Grompe, M. & D'Andrea, A. Fanconi anemia and DNA repair. Hum. Mol. Genet.10, 2253–2259 (2001). ArticleCASPubMed Google Scholar
Resnick, I. B. et al. Nijmegen breakage syndrome: Clinical characteristics and mutation analysis in eight unrelated Russian families. J. Pediatr.140, 355–361 (2002). ArticlePubMed Google Scholar
Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol.12, 293–296 (2000). ArticleCASPubMed Google Scholar
Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet.31, 635–662 (1997). ArticleCASPubMed Google Scholar
Bressan, D. A., Baxter, B. K. & Petrini, J. H. The Mre11–Rad50–Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell Biol.19, 7681–7687 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wu, X. et al. Independence of R/M/N focus formation and the presence of intact BRCA1. Science289, 11 (2000). ArticleCASPubMed Google Scholar
Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11–p95 complex and the DNA damage response. Science285, 747–750 (1999). ArticleCASPubMed Google Scholar
Lim, D. S. et al. ATM phosphorylates p95/NBS1 in an S-phase checkpoint pathway. Nature404, 613–617 (2000). ArticleCASPubMed Google Scholar
Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature405, 473–477 (2000). ArticleCASPubMed Google Scholar
Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature405, 477–482 (2000). ArticleCASPubMed Google Scholar
Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet.25, 115–119 (2000). ArticleCASPubMed Google Scholar
Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell7, 249–262 (2001). ArticleCASPubMed Google Scholar
Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell4, 511–518 (1999). ArticleCASPubMed Google Scholar
Taniguchi, T. et al. S phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood100, 2414–2420 (2002). ArticleCASPubMed Google Scholar
Maser, R. S., Zinkel, R. & Petrini, J. H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nature Genet.27, 417–421 (2001). ArticleCASPubMed Google Scholar
Auerbach, A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol.21, 731–733 (1993). CASPubMed Google Scholar
Ranganathan, V. et al. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr. Biol.11, 962–966 (2001). ArticleCASPubMed Google Scholar
Desai-Mehta, A., Cerosaletti, K. M. & Concannon, P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol.21, 2184–2191 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. J. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double strand breaks. Mol. Cell. Biol.17, 6087–6096 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dolganov, G. M. et al. Human Rad50 is physically associated with hMre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol.16, 4832–4841 (1996). ArticleCASPubMedPubMed Central Google Scholar
Carney, J. P. et al. The hMre11/hRad50 protein complex and nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell93, 477–486 (1998). ArticleCASPubMed Google Scholar
Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCASPubMed Google Scholar
Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science297, 606–609 (2002). ArticleCASPubMed Google Scholar
Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev.13, 1276–1288 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grenon, M., Gilbert, C. & Lowndes, N. F. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nature Cell Biol.3, 844–847 (2001). ArticleCASPubMed Google Scholar
Kupfer, G. et al. The Fanconi anemia protein, FAC, binds to the cyclin-dependent kinase, cdc2. Blood90, 1047–1054 (1997). CASPubMed Google Scholar
Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A. D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol.19, 4866–4873 (1999). ArticleCASPubMedPubMed Central Google Scholar
Naf, D., Kupfer, G. M., Suliman, A., Lambert, K. & D'Andrea, A. D. Functional activity of the Fanconi anemia protein, FAA, requires FAC binding and nuclear localization. Mol. Cell. Biol.18, 5952–5960 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xu, B., Kim, S. & Kastan, M. B. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol. Cell. Biol.21, 3445–3450 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood98, 3435–3440 (2001). ArticleCASPubMed Google Scholar