The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots (original) (raw)

References

  1. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)
    Article CAS Google Scholar
  2. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)
    Article Google Scholar
  3. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)
    Article ADS CAS Google Scholar
  4. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003)
    Article ADS CAS Google Scholar
  5. Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)
    Article ADS Google Scholar
  6. Müller, A. et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911 (1998)
    Article Google Scholar
  7. Friml, J., Wisniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002)
    Article ADS Google Scholar
  8. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2002)
    Article CAS Google Scholar
  9. Luschnig, C., Gaxiola, R. A., Grisafi, P. & Fink, G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187 (1998)
    Article CAS Google Scholar
  10. Utsuno, K., Shikanai, T., Yamada, Y. & Hashimoto, T. Agr, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118 (1998)
    Article CAS Google Scholar
  11. Chen, R. et al. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl Acad. Sci. USA 95, 15112–15117 (1998)
    Article ADS CAS Google Scholar
  12. Noh, B., Murphy, A. S. & Spalding, E. P. _Multidrug Resistance_–like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441–2454 (2001)
    Article CAS Google Scholar
  13. Noh, B., Bandyopadhyay, A., Peer, W. A., Spalding, E. P. & Murphy, A. S. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423, 999–1002 (2003)
    Article ADS CAS Google Scholar
  14. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999)
    Article CAS Google Scholar
  15. Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)
    Article ADS CAS Google Scholar
  16. Geldner, N. et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400 (2004)
    Article CAS Google Scholar
  17. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004)
    Article CAS Google Scholar
  18. Sieberer, T. et al. Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Curr. Biol. 10, 1595–1598 (2000)
    Article CAS Google Scholar
  19. Srivastava, L. Plant Growth and Development: Hormones and Environment (Academic, New York, 2002)
    Google Scholar
  20. Okada, K., Ueda, J., Komaki, M., Bell, C. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991)
    Article CAS Google Scholar
  21. Davies, P. J., Doro, J. A. & Tarbox, A. W. The movement and physiological effect of indoleacetic acid following point applications to root tips of Zea mays. Physiol. Plant. 36, 333–337 (1976)
    Article CAS Google Scholar
  22. Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J. & Muday, G. K. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122, 481–490 (2000)
    Article CAS Google Scholar
  23. Tsugeki, R. & Fedoroff, N. V. Genetic ablation of root cap cells in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12941–12946 (1999)
    Article ADS CAS Google Scholar
  24. Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004)
    Article CAS Google Scholar
  25. Kares, C., Prinsen, E., Van Onckelen, H. & Otten, L. IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol. Biol. 15, 225–236 (1990)
    Article CAS Google Scholar
  26. Ottenschläger, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003)
    Article ADS Google Scholar
  27. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996)
    Article CAS Google Scholar
  28. Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000)
    Article CAS Google Scholar
  29. Scheres, B. et al. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475–2487 (1994)
    CAS Google Scholar
  30. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998)
    Article CAS Google Scholar
  31. Long, J. A. & Barton, M. K. The development of apical embryonic pattern in Arabidopsis. Development 125, 3027–3035 (1998)
    CAS PubMed Google Scholar
  32. Gallois, J. L., Nora, F. R., Mizukami, Y. & Sablowski, R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18, 375–380 (2004)
    Article CAS Google Scholar
  33. Ljung, K. et al. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50, 309–332 (2002)
    Article Google Scholar
  34. Estelle, M. Auxin signaling and regulated protein degradation. Trends Plant Sci. 9, 302–308 (2004)
    Article Google Scholar
  35. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)
    Article CAS Google Scholar
  36. Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P. & Scheres, B. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125, 521–531 (1998)
    CAS PubMed Google Scholar
  37. Friml, J., Benkova, E., Mayer, U., Palme, K. & Muster, G. Automated whole-mount localization techniques for plant seedlings. Plant J. 34, 115–124 (2003)
    Article CAS Google Scholar

Download references