Sox2 is required for sensory organ development in the mammalian inner ear (original) (raw)

References

  1. Fekete, D. M., Muthukumar, S. & Karagogeos, D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci. 18, 7811–7821 (1998)
    Article CAS Google Scholar
  2. Dong, S. et al. Circling, deafness, and yellow coat displayed by yellow submarine (Ysb) and light coat and circling (Lcc) mice with mutations on chromosome 3. Genomics 79, 777–784 (2002)
    Article CAS Google Scholar
  3. Eddison, M., Le, R. I. & Lewis, J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc. Natl Acad. Sci. USA 97, 11692–11699 (2000)
    Article ADS CAS Google Scholar
  4. Jan, Y. N. & Jan, L. Y. Neuronal cell fate specification in Drosophila. Curr. Opin. Neurobiol. 4, 8–13 (1994)
    Article CAS Google Scholar
  5. Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999)
    Article CAS Google Scholar
  6. Chen, P., Johnson, J. E., Zoghbi, H. Y. & Segil, N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129, 2495–2505 (2002)
    Article CAS Google Scholar
  7. Lyon, M. F., Phillips, R. J. & Fisher, G. Dose-response curves for radiation-induced gene mutations in mouse oocytes and their interpretation. Mutat. Res. 63, 161–173 (1979)
    Article CAS Google Scholar
  8. Wood, H. B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201 (1999)
    Article CAS Google Scholar
  9. Uchikawa, M., Kamachi, Y. & Kondoh, H. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech. Dev. 84, 103–120 (1999)
    Article CAS Google Scholar
  10. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003)
    Article CAS Google Scholar
  11. Knowlton, V. Y. Correlation of the development of membranous and bony labyrinths, acoustics ganglia, nerves, and brain centers of the chick embryos. J. Morphol. 121, 179–208 (1967)
    Article Google Scholar
  12. Cole, L. K. et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J. Comp. Neurol. 424, 509–520 (2000)
    Article CAS Google Scholar
  13. Zappone, M. V. et al. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382 (2000)
    CAS PubMed Google Scholar
  14. Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. & Kondoh, H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell 4, 509–519 (2003)
    Article CAS Google Scholar
  15. Cheah, K. S. et al. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development. J. Cell Biol. 128, 223–237 (1995)
    Article CAS Google Scholar
  16. Cai, J. et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol. 251, 221–240 (2002)
    Article CAS Google Scholar
  17. Buescher, M., Hing, F. S. & Chia, W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development 129, 4193–4203 (2002)
    CAS PubMed Google Scholar
  18. Overton, P. M., Meadows, L. A., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129, 4219–4228 (2002)
    CAS PubMed Google Scholar
  19. Kishi, M. et al. Requirement of _Sox2_-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127, 791–800 (2000)
    CAS PubMed Google Scholar
  20. Chen, P. & Segil, N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126, 1581–1590 (1999)
    CAS PubMed Google Scholar
  21. Zheng, J. L. & Gao, W. Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neurosci. 3, 580–586 (2000)
    Article CAS Google Scholar
  22. Woods, C., Montcouquiol, M. & Kelley, M. W. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neurosci. 7, 1310–1318 (2004)
    Article CAS Google Scholar
  23. Chang, W., Brigande, J. V., Fekete, D. M. & Wu, D. K. The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131, 4201–4211 (2004)
    Article CAS Google Scholar
  24. Pirvola, U. et al. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35, 671–680 (2002)
    Article CAS Google Scholar
  25. Pauley, S. et al. Expression and function of FGF10 in mammalian inner ear development. Dev. Dyn. 227, 203–215 (2003)
    Article CAS Google Scholar
  26. Kiernan, A. E. et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl Acad. Sci. USA 98, 3873–3878 (2001)
    Article ADS CAS Google Scholar
  27. Tsai, H. et al. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10, 507–512 (2001)
    Article CAS Google Scholar
  28. Morsli, H., Choo, D., Ryan, A., Johnson, R. & Wu, D. K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327–3335 (1998)
    Article CAS Google Scholar
  29. Li, H., Liu, H. & Heller, S. Pluripotent stem cells from the adult mouse inner ear. Nature Med. 9, 1293–1299 (2003)
    Article CAS Google Scholar
  30. Li, H., Roblin, G., Liu, H. & Heller, S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 100, 13495–13500 (2003)
    Article ADS CAS Google Scholar

Download references