Sox2 is required for sensory organ development in the mammalian inner ear (original) (raw)
References
Fekete, D. M., Muthukumar, S. & Karagogeos, D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci.18, 7811–7821 (1998) ArticleCAS Google Scholar
Dong, S. et al. Circling, deafness, and yellow coat displayed by yellow submarine (Ysb) and light coat and circling (Lcc) mice with mutations on chromosome 3. Genomics79, 777–784 (2002) ArticleCAS Google Scholar
Eddison, M., Le, R. I. & Lewis, J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc. Natl Acad. Sci. USA97, 11692–11699 (2000) ArticleADSCAS Google Scholar
Jan, Y. N. & Jan, L. Y. Neuronal cell fate specification in Drosophila. Curr. Opin. Neurobiol.4, 8–13 (1994) ArticleCAS Google Scholar
Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science284, 1837–1841 (1999) ArticleCAS Google Scholar
Chen, P., Johnson, J. E., Zoghbi, H. Y. & Segil, N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development129, 2495–2505 (2002) ArticleCAS Google Scholar
Lyon, M. F., Phillips, R. J. & Fisher, G. Dose-response curves for radiation-induced gene mutations in mouse oocytes and their interpretation. Mutat. Res.63, 161–173 (1979) ArticleCAS Google Scholar
Wood, H. B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev.86, 197–201 (1999) ArticleCAS Google Scholar
Uchikawa, M., Kamachi, Y. & Kondoh, H. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech. Dev.84, 103–120 (1999) ArticleCAS Google Scholar
Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17, 126–140 (2003) ArticleCAS Google Scholar
Knowlton, V. Y. Correlation of the development of membranous and bony labyrinths, acoustics ganglia, nerves, and brain centers of the chick embryos. J. Morphol.121, 179–208 (1967) Article Google Scholar
Cole, L. K. et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J. Comp. Neurol.424, 509–520 (2000) ArticleCAS Google Scholar
Zappone, M. V. et al. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development127, 2367–2382 (2000) CASPubMed Google Scholar
Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. & Kondoh, H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell4, 509–519 (2003) ArticleCAS Google Scholar
Cheah, K. S. et al. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development. J. Cell Biol.128, 223–237 (1995) ArticleCAS Google Scholar
Cai, J. et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol.251, 221–240 (2002) ArticleCAS Google Scholar
Buescher, M., Hing, F. S. & Chia, W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development129, 4193–4203 (2002) CASPubMed Google Scholar
Overton, P. M., Meadows, L. A., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development129, 4219–4228 (2002) CASPubMed Google Scholar
Kishi, M. et al. Requirement of _Sox2_-mediated signaling for differentiation of early Xenopus neuroectoderm. Development127, 791–800 (2000) CASPubMed Google Scholar
Chen, P. & Segil, N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development126, 1581–1590 (1999) CASPubMed Google Scholar
Zheng, J. L. & Gao, W. Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neurosci.3, 580–586 (2000) ArticleCAS Google Scholar
Woods, C., Montcouquiol, M. & Kelley, M. W. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neurosci.7, 1310–1318 (2004) ArticleCAS Google Scholar
Chang, W., Brigande, J. V., Fekete, D. M. & Wu, D. K. The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development131, 4201–4211 (2004) ArticleCAS Google Scholar
Pirvola, U. et al. FGFR1 is required for the development of the auditory sensory epithelium. Neuron35, 671–680 (2002) ArticleCAS Google Scholar
Pauley, S. et al. Expression and function of FGF10 in mammalian inner ear development. Dev. Dyn.227, 203–215 (2003) ArticleCAS Google Scholar
Kiernan, A. E. et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl Acad. Sci. USA98, 3873–3878 (2001) ArticleADSCAS Google Scholar
Tsai, H. et al. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet.10, 507–512 (2001) ArticleCAS Google Scholar
Morsli, H., Choo, D., Ryan, A., Johnson, R. & Wu, D. K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci.18, 3327–3335 (1998) ArticleCAS Google Scholar
Li, H., Liu, H. & Heller, S. Pluripotent stem cells from the adult mouse inner ear. Nature Med.9, 1293–1299 (2003) ArticleCAS Google Scholar
Li, H., Roblin, G., Liu, H. & Heller, S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA100, 13495–13500 (2003) ArticleADSCAS Google Scholar